cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061512 a(0) = 1; a(n) is obtained by incrementing each digit of a(n-1) by 2.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 33, 55, 77, 99, 1111, 3333, 5555, 7777, 9999, 11111111, 33333333, 55555555, 77777777, 99999999, 1111111111111111, 3333333333333333, 5555555555555555, 7777777777777777, 9999999999999999, 11111111111111111111111111111111, 33333333333333333333333333333333
Offset: 0

Views

Author

Amarnath Murthy, May 08 2001

Keywords

Comments

In A061511-A061522, A061746-A061750 when the incremented digit exceeds 9 it is written as a 2-digit string. So 9+1 becomes the 2-digit string 10, etc.
Also: odd repdigits (A010785) of length 2^k, cf. formula. - M. F. Hasler, Jun 24 2016

Examples

			Following 33: 3+2 = 5 and 3+2 = 5, hence the next term is 55.
		

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]+2)]]&,1,30] (* Harvey P. Dale, Apr 13 2012 *)
  • PARI
    A061512(n)=10^2^(n\5)\9*(n%5*2+1) \\ M. F. Hasler, Jun 24 2016
    
  • PARI
    nxt(n) = my(d=digits(n)); if(d[1]<9,n+2*(10^#d - 1)/9,(10^(2*#d) - 1)/9)
    inv(n) = {my(d=digits(n));5*logint(#d,2) + (d[1]+1)\2} \\ David A. Corneth, Jun 24 2016

Formula

a(n) = (10^2^floor(n/5)-1)/9*(n%5*2+1), where n%5 means the remainder (in {0..4}) of n divided by 5. - M. F. Hasler, Jun 24 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001