cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061535 a(n) = a(n-1) + the number of primes <= a(n-1).

Original entry on oeis.org

2, 3, 5, 8, 12, 17, 24, 33, 44, 58, 74, 95, 119, 149, 184, 226, 274, 332, 399, 477, 568, 671, 792, 930, 1088, 1269, 1474, 1707, 1973, 2271, 2608, 2986, 3415, 3895, 4434, 5036, 5710, 6461, 7299, 8229, 9260, 10407, 11681, 13083, 14639, 16354, 18250
Offset: 1

Views

Author

Keywords

Comments

From Robert G. Wilson v, Jan 14 2012: (Start)
Obviously, the first difference is PrimePi(a(n)).
Number of terms less than and equal to 2^k: 1, 2, 4, 5, 7, 10, 13, 16, 20, 24, 29, 34, 39, 46, 52, 59, 67, 75, 83, 92, 101, 111, 122, 132, 144, 156, 168, 181, 194, 208, 222, 237, 252, 268, 284, 301, 318, 335, 353, 372, 391, 411, 431, 451, 472, 494, 516, 538, ....
Number of terms less than 10^k: 4, 12, 24, 41, 64, 91, 124, 163, 206, 255, 310, 369, 434, 505, .... (End)

Programs

  • Maple
    A061535 := proc(n)
        option remember;
        if n= 1 then
            2;
        else
            procname(n-1)+numtheory[pi](procname(n-1)) ;
        end if;
    end proc:
    seq(A061535(n),n=1..30); # R. J. Mathar, Jun 18 2021
  • Mathematica
    a[1] = 2; a[n_] := a[n] = a[n - 1] + PrimePi[ a[n - 1] ]; Table[ a[n], {n, 1, 75} ]
    NestList[#+PrimePi[#]&,2,50] (* Harvey P. Dale, Apr 15 2019 *)
  • PARI
    { default(primelimit, 4294965247); for (n=1, 238, if (n==1, a=2, a+=primepi(a)); write("b061535.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 24 2009