A061551 Number of paths along a corridor width 8, starting from one side.
1, 1, 2, 3, 6, 10, 20, 35, 69, 124, 241, 440, 846, 1560, 2977, 5525, 10490, 19551, 36994, 69142, 130532, 244419, 460737, 863788, 1626629, 3052100, 5743674, 10782928, 20283121, 38092457, 71632290, 134560491, 252989326, 475313762
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 69*x^8 + ....
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics (2014).
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, arXiv:1407.2197 [math.CO], (8-July-2014)
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Nachum Dershowitz, Between Broadway and the Hudson, arXiv:2006.06516 [math.CO], 2020.
- L. E. Jeffery, Unit-primitive matrices
- Marc A. A. Van Leeuwen, Some simple bijections involving lattice walks and ballot sequences, arXiv:1010.4847 [math.CO], (23-October-2010)
- Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-1).
Crossrefs
Narrower corridors effectively produce A000007, A000012, A016116, A000045, A038754, A028495, A030436, A061551, A178381, A336675, A336678.
An infinitely wide corridor (i.e., just one wall) would produce A001405.
Equivalently, the above mentioned corridor numbers are exactly the ranges of the circular Pascal array of order d = 2, 3, 4, 5, 6, 7, 8, respectively, and this is true for any natural number d greater than or equal to 2.
a(n) = A094718(8, n).
Programs
-
Maple
a[0]:=1: a[1]:=1: a[2]:=2: a[3]:=3: a[4]:=6: a[5]:=10: a[6]:=20: a[7]:=35: for n from 8 to 33 do a[n]:=7*a[n-2]-15*a[n-4]+10*a[n-6]-a[n-8] od: seq(a[n],n=0..33); # Emeric Deutsch, Aug 14 2006 with(GraphTheory): P:=8: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=33; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P); od: seq(a(n),n=0..nmax); # Johannes W. Meijer, May 29 2010 X := j -> (-1)^(j/9) - (-1)^(1-j/9): a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7])/9: seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
-
Mathematica
LinearRecurrence[{1,3,-2,-1},{1,1,2,3},40] (* Harvey P. Dale, Dec 19 2011 *) a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]] Table[a[n,8],{n,0,40}]//Round (* Herbert Kociemba, Sep 17 2020 *)
Formula
a(n) = sum(b(n,i)) where b(n,0) = b(n,9) = 0, b(0,1)=1, b(0, n)=0 if n!=1 and b(n,i) = b(n-1,i) + b(n+1,i) if 0 < n < 9.
From Emeric Deutsch, Aug 14 2006: (Start)
G.f.: (1-2*x^2)/((1-x)*(1-3*x^2-x^3)).
a(n) = 7*a(n-2) - 15*a(n-4) + 10*a(n-6) - a(n-8). (End)
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - a(n-4), for n > 3, with {a(k)}={1,1,2,3}, k=0,1,2,3. - L. Edson Jeffery, Mar 18 2011
a(n) = A187498(3*n + 2). - L. Edson Jeffery, Mar 18 2011
a(n) = A205573(3,n). - L. Edson Jeffery, Feb 06 2012
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x / (1 - x / (1 - x / (1 + x))))))). - Michael Somos, Feb 08 2015
a(n) = 2^n/9*Sum_{r=1..8} (1-(-1)^r)cos(Pi*r/9)^n*(1+cos(Pi*r/9)). - Herbert Kociemba, Sep 17 2020
Comments