A061553 Sum of absolute values of coefficients of expansion of (1-x)(1-x^2)(1-x^3)...(1-x^n).
1, 2, 4, 6, 8, 12, 16, 20, 28, 36, 44, 54, 72, 92, 104, 138, 176, 212, 268, 332, 416, 508, 628, 776, 968, 1192, 1480, 1836, 2288, 2812, 3472, 4292, 5312, 6572, 8120, 10028, 12388, 15300, 18860, 23276, 28740, 35468, 43732, 53954, 66540, 82016, 101044
Offset: 0
Keywords
Examples
a(1) = 1+1 = 2; a(4) = Length(P(4,x)) = Length(1 - x - x^2 + 2x^5 - x^8 - x^9 + x^10) = 1+1+1+2+1+1+1 = 8
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
PARI
a(n) = {pol = prod(i=1, n, 1-x^i); return (sum(i=0, poldegree(pol), abs(polcoeff(pol, i))));} \\ Michel Marcus, Jun 12 2013
Formula
a(n) := |c(n, 0)| + |c(n, 1)| + ... + |c(n, n(n+1)/2)| where c(n, j) are the coefficients of the polynomial P(n, x) := (1-x)(1-x^2)(1-x^3)...(1-x^n)
Extensions
a(0)=1 prepended by Seiichi Manyama, May 03 2018
Comments