A061588 a(1) = 2; thereafter a(n) is the number obtained by replacing each digit of a(n-1) with its square.
2, 4, 16, 136, 1936, 181936, 164181936, 13616164181936, 193613613616164181936, 1819361936193613613616164181936, 1641819361819361819361936193613613616164181936, 136161641819361641819361641819361819361819361936193613613616164181936
Offset: 1
Examples
After 136: the squares of 1, 3, 6 are 1, 9, 36 respectively hence the next term is 1936. a(11) = a(7)*10^L(a(6)+a(10))+a(6)*10^L(a(10))+a(10) = 13616164181936*10^55 + 164181936*10^46 + 1641819361819361819361936193613613616164181936 = 136161641819361641819361641819361819361819361936193613613616164181936 a(100) = 1936...*10^L(a(96)+a(99))+136...*10^L(a(99))+136...936, where L(100) has approximately 2.74*10^17 digits. - _William Davidson_, Aug 15 2012
Links
- John Cerkan, Table of n, a(n) for n = 1..18
- William Davidson, Introducing the peculiar 'Davidson Sequence', MathFest 2012; see p. 37.
Programs
-
Mathematica
NestList[FromDigits[Flatten[IntegerDigits[IntegerDigits[#]^2]]] &, 2, 11] (* Paolo Xausa, Jan 10 2025 *)
-
Python
def digits(n): d = [] while n > 0: d.append(n % 10) n = n // 10 return d def sqdig(n): new = 0 num = digits(n) spacing = 0 while num: k = num.pop(0) new += (10 ** (spacing)) * (k**2) if k > 3: spacing += 1 spacing += 1 return new def a(n): i = 2 while n > 1: i = sqdig(i) n -= 1 return i # David Nacin, Aug 19 2012
-
Python
from itertools import accumulate def f(an, _): return int("".join(str(int(d)**2) for d in str(an))) print(list(accumulate([2]*11, f))) # Michael S. Branicky, Jan 01 2022
Formula
From William Davidson, Aug 15 2012: (Start)
For integer n > 5,
a(n) = a(n-4)*10^(L(a(n-5))+L(a(n-1))) + a(n-5)*10^(L(a(n-1))) + a(n-1), where L(x) is the number of digits in x.
L(a(n)) = (W^(n-1)*[s1]^T)^T*[d]^T, where W is the 5 X 5 square matrix [(0 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1) (1 1 0 0 1)], [s1] = [1 2 3 4 6], [d] = [1 0 0 0 0], and T denotes transpose.
To determine the initial digits of a(n), n > 5, let b = ((n+2) mod 4) + 2. Then a(n) begins with a(b). E.g. let n = 100, b = 4, then a(100) = 1936... (End)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org) and Asher Auel, May 15 2001
Corrected by Matthew Vandermast, Apr 23 2003