A180489
Smallest pandigital number (A171102) divisible by the n-th prime A000040(n).
Original entry on oeis.org
1023456798, 1023456789, 1023467895, 1023456798, 1024375869, 1023456798, 1023457698, 1023458769, 1023475689, 1023468957, 1023458769, 1023654987, 1023458769, 1023469875, 1023467958, 1023459786, 1023457896, 1023458976
Offset: 1
a(1) is the smallest pandigital number divisible by prime(1) = 2, which is 1023456798. - _David J. Seal_, Sep 18 2017
-
With[{s = Select[FromDigits@ # & /@ Permutations[Range[0, 9], {10}], # > 10^9 &]}, Table[SelectFirst[s, Divisible[#, Prime@ n] &], {n, 18}]] (* Michael De Vlieger, Sep 18 2017, after Robert G. Wilson v at A171102 *)
A217535
Least number having in its decimal representation each digit n times.
Original entry on oeis.org
1023456789, 10012233445566778899, 100011222333444555666777888999, 1000011122223333444455556666777788889999, 10000011112222233333444445555566666777778888899999, 100000011111222222333333444444555555666666777777888888999999
Offset: 1
-
a:= n-> parse(cat(1,0$n,1$(n-1),seq(i$n, i=2..9))):
seq(a(n), n=1..10); # Alois P. Heinz, Jun 25 2017
-
A217535(n)=sum(d=1,9,10^(n-(d==1))\9*d*10^(n*(9-d)))+10^(10*n-1)
A292471
Primes that do not divide any 10-digit pandigital number (i.e. any value in A050278).
Original entry on oeis.org
111119, 123457, 178889, 199999, 224467, 246913, 325477, 333337, 333367, 333667, 336667, 345679, 359147, 361909, 387403, 394549, 411113, 419753, 443221, 444449, 449161, 470551, 473219, 476647, 476659, 504323, 506173, 509053, 512683, 513269, 514289, 514357
Offset: 1
a(1) = 111119 because 111119 is prime and does not divide any of the 10-digit pandigital numbers 1023456789, 1023456798, ..., 9876543210, and all smaller primes do divide at least one of them.
A292703
Values of n such that prime(n) does not divide any 10-digit pandigital number (i.e. any value in A050278).
Original entry on oeis.org
10545, 11602, 16237, 17984, 19978, 21788, 28046, 28666, 28669, 28693, 28928, 29629, 30698, 30896, 32869, 33438, 34699, 35373, 37198, 37300, 37639, 39273, 39477, 39755, 39756, 41859, 42003, 42219, 42490, 42538, 42619, 42624
Offset: 1
a(1) = 10545 because prime(10545) = 111119 does not divide any of the 10-digit pandigital numbers 1023456789, 1023456798, ..., 9876543210, and all smaller primes do divide at least one of them.
A302096
a(n) is the smallest pandigital number divisible by n, or 0 if no such pandigital number exists.
Original entry on oeis.org
1023456789, 1023456798, 1023456789, 1023457896, 1023467895, 1023456798, 1023456798, 1023457896, 1023456789, 1234567890, 1024375869, 1023457896, 1023456798, 1023456798, 1023467895, 1023457968, 1023457698, 1023456798, 1023458769, 1234567980, 1023456798, 1024375968
Offset: 1
a(11) = 1024375869 = 11 * 93125079 because it is the smallest pandigital number that is divisible by 11;
a(100) = 0 because there is no pandigital number that is divisible by 100.
-
s = Select[FromDigits /@ Permutations[Range[0, 9]], # > 10^9 &]; Table[ SelectFirst[ s, Mod[#, n] == 0 &, 0], {n, 22}] (* Giovanni Resta, May 15 2018 *)
-
# see link for another program
from itertools import permutations
def a(n): return next((t for p in permutations("0123456789") if p[0] != "0" and (t:=int("".join(p)))%n == 0), 0)
print([a(n) for n in range(1, 23)]) # Michael S. Branicky, Mar 05 2025
Showing 1-5 of 5 results.
Comments