A061654 a(n) = (3*16^n + 2)/5.
1, 10, 154, 2458, 39322, 629146, 10066330, 161061274, 2576980378, 41231686042, 659706976666, 10555311626650, 168884986026394, 2702159776422298, 43234556422756762, 691752902764108186, 11068046444225730970, 177088743107611695514, 2833419889721787128218, 45334718235548594051482
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..100
- M. Haynes and S. Churchman, Bode's Law
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Crossrefs
Cf. A003461.
Programs
-
Mathematica
(3*16^Range[0,20]+2)/5 (* or *) LinearRecurrence[{17,-16},{1,10},20] (* Harvey P. Dale, Feb 04 2015 *)
-
PARI
a(n) = { (3*16^n + 2)/5 } \\ Harry J. Smith, Jul 25 2009
Formula
From Colin Barker, Mar 13 2012: (Start)
a(n) = 17*a(n-1) - 16*a(n-2).
G.f.: (1-7*x)/((1-x)*(1-16*x)). (End)
Comments