A061660 Numbers k > 1 such that, in base 6, k and k^2 contain the same digits in the same proportion.
3697, 3940, 4802, 5845, 5905, 21127, 21715, 22182, 22867, 22897, 23380, 23640, 24367, 26815, 28812, 28910, 32192, 33705, 33815, 35000, 35065, 35070, 35430, 35977, 37082, 37712, 40277, 44535, 122915, 125947, 126762, 128350, 129670, 130290, 133092, 134397
Offset: 1
Examples
3697 = 25041_6 and 3697^2 = 1204540521_6.
Links
- Ray Chandler, Table of n, a(n) for n = 1..1000 (First 500 terms from Alois P. Heinz)
Programs
-
Maple
p:= n-> add(x^i, i=convert(n, base, 6)): a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0, a(n-1)) while p(k)*2<>p(k^2) do od; k end: seq(a(n), n=1..50); # Alois P. Heinz, May 10 2015
Extensions
Offset changed to 1 by Alois P. Heinz, May 10 2015