A061674 Smallest k such that k*n is a palindrome or becomes a palindrome when 0's are added on the left.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 38, 5, 2, 5, 16, 5, 9, 1, 12, 1, 7, 25, 2, 19, 37, 9, 8, 1, 14, 25, 1, 8, 2, 7, 3, 13, 15, 1, 16, 6, 23, 1, 2, 9, 3, 44, 7, 1, 19, 13, 4, 185, 1, 11, 3, 4, 13, 1, 442, 7, 4, 33, 9, 1, 11, 4, 6, 1, 845, 35, 4, 3, 4, 65, 1, 11, 6, 1, 12345679, 8, 9, 3
Offset: 0
Examples
a(12) = 5 since 5*12 = 60 (i.e. 060) is a palindrome.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..2500
- Patrick De Geest, Smallest multipliers to make a number palindromic.
Programs
-
ARIBAS
stop := 50000000; for n := 0 to 100 do k := 1; test := true; while test and k < stop do m := omit_trailzeros(n*k); if test := m <> int_reverse(m) then inc(k); end; end; if k < stop then write(k," "); else write(-1," "); end; end;
-
Haskell
a061674 n = until ((== 1) . a136522 . a004151 . (* n)) (+ 1) 1 -- Reinhard Zumkeller, Jul 20 2012
-
Mathematica
rz[n_]:=Module[{idn=IntegerDigits[n]},While[Last[idn]==0,idn=Most[idn]];idn]; k[n_]:=Module[{k=1,p},p=k*n;While[rz[p]!=Reverse[rz[p]],k++;p=k*n];k]; Join[ {1},Array[k,90]] (* Harvey P. Dale, Mar 06 2013 *)
Comments