A061680 a(n) = gcd(d(n^2), d(n)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
This GCD can only be odd since d(n^2) is odd. For n = 4608: a(4608) = gcd(d(21233664), d(4608)) = gcd(95, 30) = 5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Harry J. Smith)
Programs
-
Mathematica
Table[GCD[DivisorSigma[0,n],DivisorSigma[0,n^2]],{n,110}] (* Harvey P. Dale, Sep 03 2023 *)
-
PARI
a(n) = gcd(numdiv(n^2), numdiv(n)); \\ Harry J. Smith, Jul 26 2009
-
PARI
a(n) = {my(e = factor(n)[,2]); gcd(vecprod(apply(x -> 2*x+1, e)), vecprod(apply(x -> x+1, e)));} \\ Amiram Eldar, Dec 02 2023
Extensions
Offset changed from 0 to 1 by Harry J. Smith, Jul 26 2009