cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061680 a(n) = gcd(d(n^2), d(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jun 18 2001

Keywords

Examples

			This GCD can only be odd since d(n^2) is odd.
For n = 4608: a(4608) = gcd(d(21233664), d(4608)) = gcd(95, 30) = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[0,n],DivisorSigma[0,n^2]],{n,110}] (* Harvey P. Dale, Sep 03 2023 *)
  • PARI
    a(n) = gcd(numdiv(n^2), numdiv(n)); \\ Harry J. Smith, Jul 26 2009
    
  • PARI
    a(n) = {my(e = factor(n)[,2]); gcd(vecprod(apply(x -> 2*x+1, e)), vecprod(apply(x -> x+1, e)));} \\ Amiram Eldar, Dec 02 2023

Formula

a(n) = gcd(A000005(A000290(n)), A000005(n)) = gcd(A048691(n), A000005(n)).

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Jul 26 2009