cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A091201 Number of orbits of length n under the map whose periodic points are counted by A061688.

Original entry on oeis.org

1, 32, 16281, 52293792, 692825815625, 28927809504181734
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old name was: A061688 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n under that map.

Examples

			b(1)=1,b(3)=48844, so a(3)=(1/3)(48844-1)=16281.
		

Crossrefs

Cf. A061688.

Formula

If b(n) is the (n+1)th term of A061688, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).

Extensions

Name clarified by Michel Marcus, May 14 2015

A275043 Number A(n,k) of set partitions of [k*n] such that within each block the numbers of elements from all residue classes modulo k are equal for k>0, A(n,0)=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 5, 16, 15, 1, 1, 1, 9, 64, 131, 52, 1, 1, 1, 17, 298, 1613, 1496, 203, 1, 1, 1, 33, 1540, 25097, 69026, 22482, 877, 1, 1, 1, 65, 8506, 461105, 4383626, 4566992, 426833, 4140, 1, 1, 1, 129, 48844, 9483041, 350813126, 1394519922, 437665649, 9934563, 21147, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 14 2016

Keywords

Examples

			A(2,2) = 3: 1234, 12|34, 14|23.
A(2,3) = 5: 123456, 123|456, 126|345, 135|246, 156|234.
A(2,4) = 9: 12345678, 1234|5678, 1238|4567, 1247|3568, 1278|3456, 1346|2578, 1368|2457, 1467|2358, 1678|2345.
A(3,2) = 16: 123456, 1234|56, 1236|45, 1245|36, 1256|34, 12|3456, 12|34|56, 12|36|45, 1346|25, 1456|23, 14|2356, 14|23|56, 16|2345, 16|23|45, 14|25|36, 16|25|34.
Square array A(n,k) begins:
  1,   1,     1,       1,          1,            1,               1, ...
  1,   1,     1,       1,          1,            1,               1, ...
  1,   2,     3,       5,          9,           17,              33, ...
  1,   5,    16,      64,        298,         1540,            8506, ...
  1,  15,   131,    1613,      25097,       461105,         9483041, ...
  1,  52,  1496,   69026,    4383626,    350813126,     33056715626, ...
  1, 203, 22482, 4566992, 1394519922, 573843627152, 293327384637282, ...
		

Crossrefs

Rows n=0+1,2-5 give: A000012, A094373, A275100, A275101, A275102.
Main diagonal gives A275044.
Cf. A345400.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k*n=0, 1, add(
           binomial(n, j)^k*(n-j)*A(j, k), j=0..n-1)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k*n == 0, 1, Sum[Binomial[n, j]^k*(n-j)*A[j, k], {j, 0, n-1}]/n]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 17 2017, translated from Maple *)
Showing 1-2 of 2 results.