A061771 Primes p(k) such that p(k+1) - p(k) = 2^m for some m (smaller of a pair of consecutive primes which differ by a power of 2).
2, 3, 5, 7, 11, 13, 17, 19, 29, 37, 41, 43, 59, 67, 71, 79, 89, 97, 101, 103, 107, 109, 127, 137, 149, 163, 179, 191, 193, 197, 223, 227, 229, 239, 269, 277, 281, 307, 311, 313, 347, 349, 359, 379, 389, 397, 401, 419, 431, 439, 449, 457, 461, 463, 479, 487, 491
Offset: 1
Examples
89 is a term as the next prime 97 differs from it by 8, a power of 2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Partition[Prime[Range[100]],2,1],IntegerQ[Log2[#[[2]]-#[[1]]]]&][[All,1]] (* Harvey P. Dale, Apr 22 2019 *)
-
PARI
ispow2(n)=n>>valuation(n,2)==1 v=List();p=2;forprime(q=3,1e6,if(ispow2(q-p),listput(v,p));p=q); Vec(v) \\ Charles R Greathouse IV, Sep 18 2013
Extensions
Extended by Patrick De Geest, May 27 2001