A061775 Number of nodes in rooted tree with Matula-Goebel number n.
1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 6, 7, 6, 7, 7, 6, 6, 7, 7, 6, 7, 6, 7, 8, 7, 7, 7, 7, 8, 7, 7, 6, 8, 8, 7, 7, 7, 6, 8, 7, 7, 8, 7, 8, 8, 6, 7, 8, 8, 7, 8, 7, 7, 9, 7, 8, 8, 7, 8, 9, 7, 7, 8, 8, 7, 8, 8, 7, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 7, 8, 8, 8, 9, 7, 7, 9
Offset: 1
Keywords
Examples
a(4) = 3 because the rooted tree corresponding to the Matula-Goebel number 4 is "V", which has one root-node and two leaf-nodes, three in total. See also the illustrations in A061773.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Keith Briggs, Matula numbers and rooted trees
- Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
One more than A196050.
Sum of entries in row n of irregular table A214573.
Cf. A005517 (the position of the first occurrence of n).
Cf. A005518 (the position of the last occurrence of n).
Cf. A091233 (their difference plus one).
Cf. A214572 (Numbers k such that a(k) = 8).
Programs
-
Haskell
import Data.List (genericIndex) a061775 n = genericIndex a061775_list (n - 1) a061775_list = 1 : g 2 where g x = y : g (x + 1) where y = if t > 0 then a061775 t + 1 else a061775 u + a061775 v - 1 where t = a049084 x; u = a020639 x; v = x `div` u -- Reinhard Zumkeller, Sep 03 2013
-
Maple
with(numtheory): a := proc (n) local u, v: u := n-> op(1, factorset(n)): v := n-> n/u(n): if n = 1 then 1 elif isprime(n) then 1+a(pi(n)) else a(u(n))+a(v(n))-1 end if end proc: seq(a(n), n = 1..108); # Emeric Deutsch, Sep 19 2011
-
Mathematica
a[n_] := Module[{u, v}, u = FactorInteger[#][[1, 1]]&; v = #/u[#]&; If[n == 1, 1, If[PrimeQ[n], 1+a[PrimePi[n]], a[u[n]]+a[v[n]]-1]]]; Table[a[n], {n, 108}] (* Jean-François Alcover, Jan 16 2014, after Emeric Deutsch *)
-
PARI
A061775(n) = if(1==n, 1, if(isprime(n), 1+A061775(primepi(n)), {my(pfs,t,i); pfs=factor(n); pfs[,1]=apply(t->A061775(t),pfs[,1]); (1-bigomega(n)) + sum(i=1, omega(n), pfs[i,1]*pfs[i,2])})); for(n=1, 10000, write("b061775.txt", n, " ", A061775(n))); \\ Antti Karttunen, Aug 16 2014
-
Python
from functools import lru_cache from sympy import isprime, factorint, primepi @lru_cache(maxsize=None) def A061775(n): if n == 1: return 1 if isprime(n): return 1+A061775(primepi(n)) return 1+sum(e*(A061775(p)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022
Formula
a(1) = 1; if n = p_t (= the t-th prime), then a(n) = 1+a(t); if n = uv (u,v>=2), then a(n) = a(u)+a(v)-1.
a(n) = A196050(n)+1. - Antti Karttunen, Aug 16 2014
Extensions
More terms from David W. Wilson, Jun 25 2001
Extended by Emeric Deutsch, Sep 19 2011
Comments