cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A350536 a(n) is the smallest proper multiple of 2n+1 which contains only odd digits, or -1 if no such multiple exists.

Original entry on oeis.org

3, 9, 15, 35, 99, 33, 39, 75, 51, 57, 315, 115, 75, 135, 319, 93, 99, 175, 111, 117, 533, 559, 135, 517, 539, 153, 159, 715, 171, 177, 793, 315, 195, 335, 759, 355, 511, 375, 539, 395, 1377, 913, 595, 957, 979, 1911, 1395, 1995, 3395, 9999, 1111, 515, 315, 535, 1199, 333
Offset: 0

Views

Author

Bernard Schott, Jan 04 2022

Keywords

Comments

Generalization of the problem 1/2 of International Mathematical Talent Search, round 2 (see link and 2nd example).
If the escape clause is used, it will be necessarily for terms coming from n = 12 + 25*k, k >= 0.

Examples

			a(10) = 315 = 21 * 15 is the smallest multiple of 21 which contains only odd digits.
a(4998) = 33339995 = 9997 * 3335 is the smallest multiple of 9997 which contains only odd digits, so this is the answer to the IMTS problem.
		

Crossrefs

Terms belong to A014261.

Programs

  • Mathematica
    a[n_] := Module[{m = 2*n + 1, k}, k = 3*m; While[!AllTrue[IntegerDigits[k], OddQ], k += 2*m]; k]; Array[a, 50, 0] (* Amiram Eldar, Jan 04 2022 *)
  • PARI
    isok(k) = my(d=digits(k)); #d == #select(x->((x%2)==1), d);
    a(n) = my(k=6*n+3); while (!isok(k), k+=4*n+2); k; \\ Michel Marcus, Jan 04 2022
    
  • Python
    from itertools import product, count
    def A350536(n):
        m = 2*n+1
        for l in count(len(str(m))):
            for s in product('13579',repeat=l):
                k = int(''.join(s))
                if k > m and k % m == 0:
                    return k # Chai Wah Wu, Jan 11 2022

Extensions

More terms from Michel Marcus, Jan 04 2022

A061831 Multiples of 9 having only even digits.

Original entry on oeis.org

0, 288, 468, 486, 648, 666, 684, 828, 846, 864, 882, 2088, 2268, 2286, 2448, 2466, 2484, 2628, 2646, 2664, 2682, 2808, 2826, 2844, 2862, 2880, 4068, 4086, 4248, 4266, 4284, 4428, 4446, 4464, 4482, 4608, 4626, 4644, 4662, 4680, 4806, 4824, 4842, 4860, 6048, 6066
Offset: 1

Views

Author

Amarnath Murthy, May 29 2001

Keywords

Examples

			648 = 9*72 is a term having all even digits.
		

Crossrefs

Programs

  • Maple
    f:= proc(k) local L,t;
      L:= convert(k,base,5);
      t:= 2*add(L[i]*10^(i-1),i=1..nops(L));
      if t mod 9 = 0 then t fi
    end proc:
    map(f, [$0..1000]); # Robert Israel, Jun 10 2018
  • Mathematica
    Select[9*Range[0, 700], AllTrue[IntegerDigits[#], EvenQ] &] (* Harvey P. Dale, Aug 07 2021 *)
  • PARI
    is(n)=n%9==0 && #setintersect(Set(digits(n)), [1,3,5,7,9])==0 \\ Charles R Greathouse IV, Feb 15 2017

Formula

For n >= 2, a(A305826(n)+1) = 2*10^n+88. - Robert Israel, Jun 10 2018

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 30 2001
Offset corrected by Charles R Greathouse IV, Feb 15 2017
Missing term 2880 inserted by Robert Israel, Jun 10 2018

A061830 Multiples of 5 having only even digits.

Original entry on oeis.org

0, 20, 40, 60, 80, 200, 220, 240, 260, 280, 400, 420, 440, 460, 480, 600, 620, 640, 660, 680, 800, 820, 840, 860, 880, 2000, 2020, 2040, 2060, 2080, 2200, 2220, 2240, 2260, 2280, 2400, 2420, 2440, 2460, 2480, 2600, 2620, 2640, 2660, 2680, 2800, 2820, 2840
Offset: 0

Views

Author

Amarnath Murthy, May 29 2001

Keywords

Examples

			220 = 5*44 is a term having all even digits.
		

Crossrefs

Cf. A061829.

Programs

  • Mathematica
    Select[5*Range[0,2000],And@@EvenQ[IntegerDigits[#]]&] (* or *) LinearRecurrence[ {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1},{0,20,40,60,80,200,220,240,260,280,400,420,440,460,480,600,620,640,660,680,800,820,840,860,880,2000},50] (* Harvey P. Dale, Feb 24 2014 *)
  • PARI
    is(n)=n%10==0 && #setintersect(Set(digits(n)), [1,3,5,7,9])==0 \\ Charles R Greathouse IV, Feb 15 2017

Formula

a(0)=0, a(1)=20, a(2)=40, a(3)=60, a(4)=80, a(5)=200, a(6)=220, a(7)=240, a(8)=260, a(9)=280, a(10)=400, a(11)=420, a(12)=440, a(13)=460, a(14)=480, a(15)=600, a(16)=620, a(17)=640, a(18)=660, a(19)=680, a(20)=800, a(21)=820, a(22)=840, a(23)=860, a(24)=880, a(25)=2000, a(n)=a(n-1)+ a(n-25)- a(n-26). - Harvey P. Dale, Feb 24 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001

A061832 Multiples of 11 having only even digits.

Original entry on oeis.org

0, 22, 44, 66, 88, 220, 242, 264, 286, 440, 462, 484, 660, 682, 880, 2002, 2024, 2046, 2068, 2200, 2222, 2244, 2266, 2288, 2420, 2442, 2464, 2486, 2640, 2662, 2684, 2860, 2882, 4004, 4026, 4048, 4202, 4224, 4246, 4268, 4400, 4422, 4444, 4466, 4488, 4620
Offset: 1

Views

Author

Amarnath Murthy, May 29 2001

Keywords

Examples

			264 = 11*24 is a term having all even digits.
		

Crossrefs

Programs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001
Offset corrected by Charles R Greathouse IV, Feb 15 2017

A061833 Multiples of 11 having only odd digits.

Original entry on oeis.org

11, 33, 55, 77, 99, 319, 517, 539, 715, 737, 759, 913, 935, 957, 979, 1111, 1133, 1155, 1177, 1199, 1331, 1353, 1375, 1397, 1551, 1573, 1595, 1771, 1793, 1991, 3113, 3135, 3157, 3179, 3311, 3333, 3355, 3377, 3399, 3531, 3553, 3575, 3597, 3751, 3773, 3795
Offset: 1

Views

Author

Amarnath Murthy, May 29 2001

Keywords

Examples

			1353 = 11*123 is a term having all odd digits.
		

Crossrefs

Programs

  • Mathematica
    Select[11*Range[400],AllTrue[IntegerDigits[#],OddQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 30 2015 *)
  • PARI
    is(n)=n%22==11 && #setintersect(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Feb 15 2017

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 30 2001
Showing 1-5 of 5 results.