A061857 Triangle in which the k-th item in the n-th row (both starting from 1) is the number of ways in which we can add 2 distinct integers from 1 to n in such a way that the sum is divisible by k.
0, 1, 0, 3, 1, 1, 6, 2, 2, 1, 10, 4, 4, 2, 2, 15, 6, 5, 3, 3, 2, 21, 9, 7, 5, 4, 3, 3, 28, 12, 10, 6, 6, 4, 4, 3, 36, 16, 12, 8, 8, 5, 5, 4, 4, 45, 20, 15, 10, 9, 7, 6, 5, 5, 4, 55, 25, 19, 13, 11, 9, 8, 6, 6, 5, 5, 66, 30, 22, 15, 13, 10, 10, 7, 7, 6, 6, 5, 78, 36, 26, 18, 16, 12, 12, 9, 8, 7, 7
Offset: 1
Examples
The second term on the sixth row is 6 because we have 6 solutions: {1+3, 1+5, 2+4, 2+6, 3+5, 4+6} and the third term on the same row is 5 because we have solutions {1+2,1+5,2+4,3+6,4+5}. Triangle begins: 0; 1, 0; 3, 1, 1; 6, 2, 2, 1; 10, 4, 4, 2, 2; 15, 6, 5, 3, 3, 2; 21, 9, 7, 5, 4, 3, 3; 28, 12, 10, 6, 6, 4, 4, 3; 36, 16, 12, 8, 8, 5, 5, 4, 4; 45, 20, 15, 10, 9, 7, 6, 5, 5, 4;
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
- Stackexchange, Question 142323
- Index entries for sequences related to subset sums modulo m
Crossrefs
Programs
-
Haskell
a061857 n k = length [()| i <- [2..n], j <- [1..i-1], mod (i + j) k == 0] a061857_row n = map (a061857 n) [1..n] a061857_tabl = map a061857_row [1..] -- Reinhard Zumkeller, May 08 2012
-
Maple
[seq(DivSumChoose2Triangle(j),j=1..120)]; DivSumChoose2Triangle := (n) -> nops(DivSumChoose2(trinv(n-1),(n-((trinv(n-1)*(trinv(n-1)-1))/2)))); DivSumChoose2 := proc(n,k) local a,i,j; a := []; for i from 1 to (n-1) do for j from (i+1) to n do if(0 = ((i+j) mod k)) then a := [op(a),[i,j]]; fi; od; od; RETURN(a); end;
-
Mathematica
a[n_, 1] := n*(n-1)/2; a[n_, k_] := Module[{r}, r = Reduce[1 <= i < j <= n && Mod[i + j, k] == 0, {i, j}, Integers]; Which[Head[r] === Or, Length[r], Head[r] === And, 1, r === False, 0, True, Print[r, " not parsed"]]]; Table[a[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 04 2014 *)
-
Scheme
(define (A061857 n) (A220691bi (A002024 n) (A002260 n))) ;; Antti Karttunen, Feb 18 2013. Needs A220691bi from A220691.
Formula
From Robert Israel, May 08 2012: (Start)
Let n+1 = b mod k with 0 <= b < k, q = (n+1-b)/k. Let k = c mod 2, c = 0 or 1.
If b = 0 or 1 then a(n,k) = q^2*k/2 + q*b - 2*q - b + 1 + c*q/2.
If b >= (k+3)/2 then a(n,k) = q^2*k/2 + q*b - 2*q + b - 1 - k/2 + c*(q+1)/2.
Otherwise a(n,k) = q^2*k/2 + q*b - 2*q + c*q/2. (End)
Extensions
Offset corrected by Reinhard Zumkeller, May 08 2012
Comments