A061862 Powerful numbers (2a): a sum of nonnegative powers of its digits.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 43, 63, 89, 132, 135, 153, 175, 209, 224, 226, 254, 258, 262, 263, 264, 267, 283, 332, 333, 334, 347, 357, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 407, 445, 463, 472, 518, 538, 598, 629, 635, 653, 675, 730, 731, 732
Offset: 1
Examples
43 = 4^2 + 3^3; 254 = 2^7 + 5^3 + 4^0 = 128 + 125 + 1. 209 = 2^7 + 9^2. 732 = 7^0 + 3^6 + 2^1.
Links
Crossrefs
Programs
-
Haskell
a061862 n = a061862_list !! (n-1) a061862_list = filter f [0..] where f x = g x 0 where g 0 v = v == x g u v = if d <= 1 then g u' (v + d) else v <= x && h 1 where h p = p <= x && (g u' (v + p) || h (p * d)) (u', d) = divMod u 10 -- Reinhard Zumkeller, Jun 02 2013
-
Mathematica
f[ n_ ] := Module[ {}, a=IntegerDigits[ n ]; e=g[ Length[ a ] ]; MemberQ[ Map[ Apply[ Plus, a^# ] &, e ], n ] ] g[ n_ ] := Map[ Take[ Table[ 0, {n} ]~Join~#, -n ] &, IntegerDigits[ Range[ 10^n ], 10 ] ] For[ n=0, n >= 0, n++, If[ f[ n ], Print[ n ] ] ]
Formula
If n = d_1 d_2 ... d_k in decimal then there are integers m_1 m_2 ... m_k >= 0 such that n = d_1^m_1 + ... + d_k^m_k.
Comments