A061898 Swap each prime in factorization of n with "neighbor" prime.
1, 3, 2, 9, 7, 6, 5, 27, 4, 21, 13, 18, 11, 15, 14, 81, 19, 12, 17, 63, 10, 39, 29, 54, 49, 33, 8, 45, 23, 42, 37, 243, 26, 57, 35, 36, 31, 51, 22, 189, 43, 30, 41, 117, 28, 87, 53, 162, 25, 147, 38, 99, 47, 24, 91, 135, 34, 69, 61, 126, 59, 111, 20, 729, 77, 78, 71, 171, 58
Offset: 1
Examples
a(60) = 126 since 60 = 2^2*3*5, swapping 2<->3 and 5<->7 gives 3^2*2*7 = 126 (and of course then a(126) = 60).
Links
Programs
-
Maple
p:= proc(n) option remember; `if`(numtheory[pi](n)::odd, nextprime(n), prevprime(n)) end: a:= n-> mul(p(i[1])^i[2], i=ifactors(n)[2]): seq(a(n), n=1..80); # Alois P. Heinz, Sep 13 2017
-
Mathematica
p[n_] := p[n] = If[OddQ[PrimePi[n]], NextPrime[n], NextPrime[n, -1]]; a[1] = 1; a[n_] := Product[p[i[[1]]]^i[[2]], {i, FactorInteger[n]}]; Array[a, 80] (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)
-
PARI
a(n) = my(f=factor(n)); for (i=1, #f~, ip = primepi(f[i,1]); if (ip % 2, f[i,1] = prime(ip+1), f[i,1] = prime(ip-1))); factorback(f); \\ Michel Marcus, Jun 09 2014
Formula
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (p^2-p)/(p^2-q(p)) = 0.9229142333..., where q(p) is the "neighbor" of p. - Amiram Eldar, Nov 29 2022
Comments