cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061911 Square root of the sum of the digits of k^2 when this sum is a square.

Original entry on oeis.org

1, 2, 3, 3, 3, 1, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 1, 2, 3, 4, 4, 3, 2, 3, 4, 5, 3, 4, 5, 4, 4, 4, 4, 4, 3, 5, 5, 5, 4, 5, 3, 5, 4, 5, 5, 2, 3, 4, 4, 3, 4, 5, 4, 5, 4, 4, 5, 4, 4, 4, 3, 5, 5, 6, 4, 5, 5, 5, 5, 5, 5, 3, 4, 4, 4, 5, 3, 4, 3, 5, 4, 5, 4, 5, 4, 3
Offset: 1

Views

Author

Asher Auel, May 17 2001

Keywords

Examples

			6^2 = 36 and 3+6 = 9 is a square, thus 3 is in the sequence. 13^2 = 169 and 1+6+9 = 16 is a square, thus 4 is in the sequence.
		

Crossrefs

Programs

  • Maple
    readlib(issqr): f := []: for n from 1 to 200 do if issqr(convert(convert(n^2,base,10),`+`)) then f := [op(f),sqrt(convert(convert(n^2,base,10),`+`))] fi; od; f;
  • Mathematica
    Select[Table[Sqrt[Total[IntegerDigits[n^2]]],{n,350}],IntegerQ] (* Jayanta Basu, May 06 2013 *)

Formula

a(n) = sqrt(A004159(A061910(n))) = sqrt(A007953((A061910(n))^2)). - Zak Seidov, Jul 04 2012