cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061914 Let H_n = n-th Hilbert matrix; sequence gives 1 / ( det(H_n) * denominator(permanent(H_n)) ).

Original entry on oeis.org

1, 1, 1, 27, 567, 1, 1, 1, 7, 9, 5103, 1275989841, 992436543, 48629390607, 169706648853, 40257567, 63, 1, 7, 31, 1, 3969, 25865973, 117649, 117649, 16807, 49, 9, 81, 117369, 59049, 33480783, 930196594089, 4238886345135097131, 169560200598623521407
Offset: 1

Views

Author

Asher Auel, May 20 2001

Keywords

Crossrefs

Cf. A005249.

Programs

  • Maple
    with(linalg): seq(1/(denom(permanent(hilbert(n)))*det(hilbert(n))), n=1..16);
  • Mathematica
    Permanent[m_List] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; f[n_] := Block[{i = Table[1/(i + j - 1), {i, n}, {j, n}]}, 1/(Det[i]Denominator[Permanent[i]])]; Table[ f[n], {n, 1, 18}] (* Robert G. Wilson v, Feb 06 2004 *)
  • PARI
    permRWN(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); n1=n-1; sg=1; m=1; nc=0; in=vector(n); x=in; for(i=1,n,x[i]=a[i,n]-sum(j=1,n,a[i,j])/2); p=prod(i=1,n,x[i]); while(m,sg=-sg; j=1; if((nc%2)!=0,j++; while(in[j-1]==0,j++)); in[j]=1-in[j]; nc+=2*in[j]-1; m=nc!=in[n1]; z=2*in[j]-1; for(i=1,n,x[i]+=z*a[i,j]); p+=sg*prod(i=1,n,x[i])); return(2*(2*(n%2)-1)*p)
    for(n=1,23,a=mathilbert(n); print1(1/(matdet(a)*denominator(permRWN(a)))", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2007
    
  • PARI
    for(n=1, 25, a=mathilbert(n); print1(1 / (matdet(a) * denominator(matpermanent(a)))", ")) \\ Vaclav Kotesovec, Aug 13 2021

Formula

a(n) = 1/(denominator(permanent(hilbert(n)))*det(hilbert(n))), where hilbert(n) denotes the n-th Hilbert matrix.

Extensions

a(18)-a(20) from Robert G. Wilson v, Feb 09 2004
a(21) from Eric W. Weisstein, Feb 19 2004
a(22) and a(23) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2007
a(24)-a(34) from Vaclav Kotesovec, Aug 14 2021
a(35) from Vaclav Kotesovec, Aug 16 2021