A061928 Array T(n,m) = 1/beta(n+1,m+1) read by antidiagonals.
6, 12, 12, 20, 30, 20, 30, 60, 60, 30, 42, 105, 140, 105, 42, 56, 168, 280, 280, 168, 56, 72, 252, 504, 630, 504, 252, 72, 90, 360, 840, 1260, 1260, 840, 360, 90, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 132, 660, 1980, 3960, 5544, 5544, 3960
Offset: 1
Examples
Antidiagonals: 6, 12, 12, 20, 30, 20, 30, 60, 60, 30, ... Array: 6 12 20 30 42 12 30 60 105 168 20 60 140 280 504 30 105 280 630 1260 42 168 504 1260 2772
References
- G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.
Crossrefs
Programs
-
Mathematica
t[n_, m_] := 1/Beta[n+1, m+1]; Take[ Flatten[ Table[ t[n+1-m, m], {n, 1, 10}, {m, 1, n}]], 52] (* Jean-François Alcover, Oct 11 2011 *)
-
PARI
A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^i*(1-x)^j),x,1)) /* Michael Somos, Feb 05 2004 */
-
PARI
A(i,j)=if(i<1||j<1,0,1/sum(k=0,i,(-1)^k*binomial(i,k)/(j+1+k))) /* Michael Somos, Feb 05 2004 */
-
Python
from sympy import factorial as f def T(n, m): return f(n + m + 1)/(f(n)*f(m)) for n in range(1, 11): print([T(m, n - m + 1) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 29 2017
Formula
beta(n+1, m+1) = gamma(n+1)*gamma(m+1)/gamma(n+m+2) = n!*m!/(n+m+1)!.
Comments