A281066 Concatenation R(n)R(n-1)R(n-2)...R(2)R(1) read mod n, where R(x) is the digit-reversal of x (with leading zeros not omitted).
0, 1, 0, 1, 1, 3, 3, 1, 0, 1, 4, 9, 5, 7, 6, 1, 6, 9, 17, 1, 15, 15, 19, 9, 21, 1, 18, 13, 28, 21, 26, 17, 15, 3, 16, 9, 30, 3, 15, 1, 1, 33, 10, 37, 36, 43, 22, 33, 19, 21, 48, 45, 2, 45, 26, 49, 27, 33, 33, 21, 48, 25, 36, 49, 36, 15, 22, 5, 27, 11, 42, 9, 2, 73, 21, 17, 59, 57, 5, 1
Offset: 1
Examples
a(13) = 31211101987654321 (mod 13) = 5.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..20008
Programs
-
Mathematica
f[n_] := Mod[ FromDigits@ Fold[ Join[ Reverse@ IntegerDigits@#2, #1] &, {}, Range@ n], n]; Array[f, 80]
-
PARI
a(n) = my(s = ""); forstep (k=n,1,-1, sk = digits(k); forstep (j=#sk, 1, -1, s = concat(s, sk[j]))); eval(s) % n; \\ Michel Marcus, Jan 28 2017
-
Python
def A281066(n): s="" for i in range(n, 0, -1): s+=str(i)[::-1] return int(s)%n # Indranil Ghosh, Jan 28 2017
Formula
a(n) = A138793(n) (mod n).
Comments