cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A061980 Square array A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1, read by antidiagonals.

Original entry on oeis.org

1, 0, 3, 0, 2, 9, 0, 1, 8, 27, 0, 0, 6, 26, 81, 0, 0, 4, 23, 80, 243, 0, 0, 3, 20, 76, 242, 729, 0, 0, 3, 17, 72, 237, 728, 2187, 0, 0, 1, 17, 66, 232, 722, 2186, 6561, 0, 0, 1, 11, 66, 222, 716, 2179, 6560, 19683, 0, 0, 1, 11, 54, 222, 701, 2172, 6552, 19682, 59049
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Examples

			Array begins as:
    1,   0,   0,   0,   0,   0,   0, ...;
    3,   2,   1,   0,   0,   0,   0, ...;
    9,   8,   6,   4,   3,   3,   1, ...;
   27,  26,  23,  20,  17,  17,  11, ...;
   81,  80,  76,  72,  66,  66,  54, ...;
  243, 242, 237, 232, 222, 222, 202, ...;
  729, 728, 722, 716, 701, 701, 671, ...;
Antidiagonal rows begin as:
  1;
  0, 3;
  0, 2, 9;
  0, 1, 8, 27;
  0, 0, 6, 26, 81;
  0, 0, 4, 23, 80, 243;
  0, 0, 3, 20, 76, 242, 729;
  0, 0, 3, 17, 72, 237, 728, 2187;
  0, 0, 1, 17, 66, 232, 722, 2186, 6561;
		

Crossrefs

Row sums are 6^n: A000400.
Columns are A000244, A024023, A060188, A061981, A061982 twice, A061983 twice, etc.

Programs

  • Mathematica
    A[n_, k_]:= A[n, k]= If[n==0, Boole[k==0], A[n-1,k] +A[n-1,Floor[k/2]] +A[n-1, Floor[k/3]]];
    T[n_, k_]:= A[k, n-k];
    Table[A[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2022 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if (n==0): return 0^k
        else: return A(n-1, k) + A(n-1, (k//2)) + A(n-1, (k//3))
    def T(n, k): return A(k, n-k)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2022

Formula

A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1.
T(n, k) = A(k, n-k).
Sum_{k=0..n} A(n, k) = A000400(n).
T(n, n) = A(n, 0) = A000244(n). - G. C. Greubel, Jun 18 2022
Showing 1-1 of 1 results.