cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061989 Number of ways to place 3 nonattacking queens on a 3 X n board.

Original entry on oeis.org

0, 0, 0, 0, 4, 14, 36, 76, 140, 234, 364, 536, 756, 1030, 1364, 1764, 2236, 2786, 3420, 4144, 4964, 5886, 6916, 8060, 9324, 10714, 12236, 13896, 15700, 17654, 19764, 22036, 24476, 27090, 29884, 32864, 36036, 39406, 42980, 46764, 50764
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 29 2001

Keywords

Crossrefs

Essentially the same as A079908.

Programs

  • Magma
    [0,0,0] cat [(n-3)*(n^2-6*n+12): n in [3..50]]; // G. C. Greubel, Apr 29 2022
    
  • Maple
    A061989 := proc(n)
        if n >= 3 then
            (n-3)*(n^2-6*n+12) ;
        else
            0;
        end if;
    end proc:
    seq(A061989(n),n=0..30) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    CoefficientList[Series[2*x^4*(2-x+2*x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 02 2013 *)
  • SageMath
    [0,0,0]+[(n-3)*((n-3)^2 +3) for n in (3..50)] # G. C. Greubel, Apr 29 2022

Formula

G.f.: 2*x^4*(2-x+2*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 7.
Explicit formula (H. Tarry, 1890): a(n) = (n-3)*(n^2-6*n+12), n >= 3.
(4, 14, 36, ...) is the binomial transform of row 4 of A117937: (4, 10, 12, 6). - Gary W. Adamson, Apr 09 2006
a(n) = 2*A229183(n-3). - R. J. Mathar, Aug 16 2019
E.g.f.: 36 + 14*x + 2*x^2 + (-36 + 22*x - 6*x^2 + x^3)*exp(x). - G. C. Greubel, Apr 29 2022