cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061991 Number of ways to place 5 nonattacking queens on a 5 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 10, 40, 164, 568, 1614, 3916, 8492, 16852, 31100, 54068, 89428, 141812, 216932, 321700, 464348, 654548, 903532, 1224212, 1631300, 2141428, 2773268, 3547652, 4487692, 5618900, 6969308, 8569588, 10453172, 12656372, 15218500, 18181988, 21592508
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^5 (4 x^11 -11 x^10 + 16 x^9 + 7 x^8 - 32 x^7 + 38 x^6 + 6 x^5 + 8 x^4 - 8 x^3 + 37 x^2 - 10 x + 5) / (x-1)^6, {x, 0, 30}], x] (* Vincenzo Librandi, May 12 2013 *)

Formula

G.f.: 2*x^5*(4*x^11 - 11*x^10 + 16*x^9 + 7*x^8 - 32*x^7 + 38*x^6 + 6*x^5 + 8*x^4 - 8*x^3 + 37*x^2 - 10*x + 5)/(x - 1)^6.
Recurrence: a(n) = 6*a(n - 1) - 15*a(n - 2) + 20*a(n - 3) - 15*a(n - 4) + 6*a(n - 5) - a(n - 6), n >= 17.
Explicit formula (V. Kotesovec, 1992): a(n) = n^5 - 30*n^4 + 407*n^3 - 3098*n^2 + 13104*n - 24332, n >= 11.