A061992
Number of ways to place 6 nonattacking queens on a 6 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 4, 94, 550, 2292, 7552, 21362, 52856, 117694, 241484, 463038, 838816, 1448002, 2398292, 3832374, 5935120, 8941514, 13145292, 18908302, 26670584, 36961170, 50409604, 67758182, 89874912, 117767194, 152596220
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001
-
CoefficientList[Series[-2 x^6 (4 x^17 -12 x^16 + 12 x^15 + 10 x^14 - 10 x^13 + 40 x^12 - 278 x^11 + 677 x^10 - 582 x^9 - 62 x^8 + 654 x^7 - 501 x^6 + 293 x^5 - 46 x^4 + 138 x^3 - 12 x^2 + 33 x + 2) / (x-1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
A061993
Number of ways to place 7 nonattacking queens on a 7 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 40, 312, 2038, 9632, 37248, 120104, 335010, 835056, 1897702, 3998456, 7907094, 14818300, 26512942, 45562852, 75580634, 121520020, 190031678, 289879092, 432420154, 632159540, 907376502, 1280833348
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes, part of V. Kotesovec, Between chessboard and computer, 1996, pp. 204 - 206.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
CoefficientList[Series[2*x^7*(20-4*x+331*x^2-88*x^3+1292*x^4-1356*x^5+2019*x^6 +264*x^7-2857*x^8+6472*x^9-7616*x^10+7462*x^11-7831*x^12+8326*x^13-5672*x^14 +1998*x^15-308*x^16-142*x^17+510*x^18-284*x^19-220*x^20+320*x^21-140*x^22 +24*x^23)/(1-x)^8, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
-
def p(x): return 20-4*x+331*x^2-88*x^3+1292*x^4-1356*x^5+2019*x^6 +264*x^7-2857*x^8+6472*x^9-7616*x^10+7462*x^11-7831*x^12+8326*x^13-5672*x^14 +1998*x^15-308*x^16-142*x^17+510*x^18-284*x^19-220*x^20+320*x^21-140*x^22 +24*x^23
[( 2*x^7*p(x)/(1-x)^8 ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Apr 29 2022
A173775
Number of ways to place 5 nonattacking queens on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 0, 10, 0, 882, 13312, 85536, 561440, 2276736, 9471744, 27991470, 85725696, 209107890, 525062144, 1116665944, 2437807104, 4691672964, 9234168960, 16462896030, 29919532544, 50215537658, 85687824384, 136944081500
Offset: 1
A319284
The profiles of the backtrack tree for the n queens problem, triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 4, 2, 1, 5, 12, 14, 12, 10, 1, 6, 20, 36, 46, 40, 4, 1, 7, 30, 76, 140, 164, 94, 40, 1, 8, 42, 140, 344, 568, 550, 312, 92, 1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680
Offset: 0
[1]
[1, 1]
[1, 2, 0]
[1, 3, 2, 0]
[1, 4, 6, 4, 2]
[1, 5, 12, 14, 12, 10]
[1, 6, 20, 36, 46, 40, 4]
[1, 7, 30, 76, 140, 164, 94, 40]
[1, 8, 42, 140, 344, 568, 550, 312, 92]
[1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352]
[1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724]
[1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680]
[1, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200]
- D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.
- Peter Luschny, Rows n = 0..19, flattened
- Candida Bowtell and Peter Keevash, The n-queens problem, arXiv:2109.08083 [math.CO] 2021.
- V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
- Peter Luschny, Julia implementation of the n queens problem with profiles
- Michael Simkin, The number of n-queens configurations, arXiv:2107.13460 [math.CO] 2021.
- Wikipedia, Backtracking
- Wikipedia, Eight queens puzzle
A172214
Number of ways to place 5 nonattacking knights on a 5 X n board.
Original entry on oeis.org
1, 28, 259, 1968, 9386, 30842, 82738, 192336, 400277, 763984, 1360797, 2291056, 3681226, 5687022, 8496534, 12333352, 17459691, 24179516, 32841667, 43842984, 57631432, 74709226, 95635956, 121031712, 151580209
Offset: 1
-
CoefficientList[Series[(42 x^12 - 52 x^11 - 268 x^10 + 884 x^9 - 268 x^8 - 1188 x^7 + 2834 x^6 - 720 x^5 + 918 x^4 + 814 x^3 + 106 x^2 + 22 x + 1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
A172204
Number of ways to place 5 nonattacking kings on a 5 X n board.
Original entry on oeis.org
0, 0, 15, 194, 1974, 9856, 34475, 95466, 224589, 468854, 893646, 1585850, 2656976, 4246284, 6523909, 9693986, 13997775, 19716786, 27175904, 36746514, 48849626, 63959000, 82604271, 105374074, 132919169
Offset: 1
-
CoefficientList[Series[x^2 * (259 * x^6 - 204 * x^5 + 1294 * x^4 + 622 * x^3 + 1035 * x^2 + 104 * x + 15)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
A172231
Number of ways to place 5 nonattacking wazirs on a 5 X n board.
Original entry on oeis.org
0, 2, 174, 1998, 10741, 38438, 107004, 251354, 522528, 990816, 1748883, 2914894, 4635639, 7089658, 10490366, 15089178, 21178634, 29095524, 39224013, 51998766
Offset: 1
-
CoefficientList[Series[x (5 x^7 + 8 x^6 + 129 x^5 + 512 x^4 + 1323 x^3 + 984 x^2 + 162 x + 2) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
A172449
Number of ways to place 8 nonattacking queens on an 8 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 92, 1066, 7828, 44148, 195270, 707698, 2211868, 6120136, 15324708, 35312064, 75937606, 153942964, 296590536, 546621416, 968910732, 1659114170, 2754780934, 4449361442, 7009572728, 10796663102, 16292133888
Offset: 1
-
CoefficientList[Series[x^7 (-72 x^31 + 360 x^30 - 360 x^29 - 1320 x^28 + 4208 x^27 - 9064 x^26 + 28358 x^25 - 65290 x^24 + 80160 x^23 - 41550 x^22 - 19482 x^21 + 62314 x^20 - 43912 x^19 - 81620 x^18 + 228424 x^17 - 261720 x^16 + 248114 x^15 - 336290 x^14 + 460564 x^13 - 453438 x^12 + 288474 x^11 - 135252 x^10 + 80270 x^9 - 85476 x^8 + 49676 x^7 - 23614 x^6 - 4768 x^5 - 1794 x^4 - 4344 x^3 - 1546 x^2 - 238 x - 92) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
A172210
Number of ways to place 5 nonattacking bishops on a 5 X n board.
Original entry on oeis.org
1, 12, 143, 770, 3368, 12632, 38566, 98968, 222351, 450682, 843169, 1479116, 2460912, 3917228, 6006056, 8917888, 12878847, 18153806, 25049515, 33917724, 45158308, 59222392, 76615476, 97900560, 123701269, 154704978, 191665937, 235408396, 286829730, 346903564
Offset: 1
-
CoefficientList[Series[(2 x^20 - 4 x^19 + 8 x^18 - 12 x^17 - 48 x^16 + 140 x^15 - 158 x^14 + 208 x^13 + 134 x^12 - 932 x^11 + 1048*x^10 -182*x^9+ 436 * x^8 + 396 x^7 - 32 x^6 + 1288 * x^5 + 668 * x^4 + 72 * x^3 + 86 * x^2 + 6 * x + 1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
A172223
Number of ways to place 5 nonattacking zebras on a 5 X n board.
Original entry on oeis.org
1, 252, 1925, 6534, 20502, 57710, 142312, 308254, 606051, 1105332, 1897899, 3100250, 4857000, 7344010, 10771530, 15387310, 21479725, 29380900, 39469835, 52175530, 67980110, 87421950, 111098800, 139670910, 173864155
Offset: 1
-
CoefficientList[Series[(14 x^16 - 32 x^15 + 14 x^14 - 292 x^13 + 898 x^12 - 536 x^11 + 514 x^10 - 4232 x^9 + 7258 x^8 - 3296 x^7 + 266 x^6 - 2018 x^5 + 5148 x^4 - 1256 x^3 + 428 x^2 + 246 x+1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
Showing 1-10 of 12 results.
Comments