cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A061992 Number of ways to place 6 nonattacking queens on a 6 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 94, 550, 2292, 7552, 21362, 52856, 117694, 241484, 463038, 838816, 1448002, 2398292, 3832374, 5935120, 8941514, 13145292, 18908302, 26670584, 36961170, 50409604, 67758182, 89874912, 117767194, 152596220
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2 x^6 (4 x^17 -12 x^16 + 12 x^15 + 10 x^14 - 10 x^13 + 40 x^12 - 278 x^11 + 677 x^10 - 582 x^9 - 62 x^8 + 654 x^7 - 501 x^6 + 293 x^5 - 46 x^4 + 138 x^3 - 12 x^2 + 33 x + 2) / (x-1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)

Formula

G.f.: - 2*x^6*(4*x^17 - 12*x^16 + 12*x^15 + 10*x^14 - 10*x^13 + 40*x^12 - 278*x^11 + 677*x^10 - 582*x^9 - 62*x^8 + 654*x^7 - 501*x^6 + 293*x^5 - 46*x^4 + 138*x^3 - 12*x^2 + 33*x + 2)/(x - 1)^7.
Recurrence: a(n) = 7*a(n - 1) - 21*a(n - 2) + 35*a(n - 3) - 35*a(n - 4) + 21*a(n - 5) - 7*a(n - 6) + a(n - 7), n >= 24.
Explicit formula (V.Kotesovec, 1992): a(n) = n^6 - 45*n^5 + 943*n^4 - 11755*n^3 + 91480*n^2 - 418390*n + 870920, n >= 17.

A061993 Number of ways to place 7 nonattacking queens on a 7 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 40, 312, 2038, 9632, 37248, 120104, 335010, 835056, 1897702, 3998456, 7907094, 14818300, 26512942, 45562852, 75580634, 121520020, 190031678, 289879092, 432420154, 632159540, 907376502, 1280833348
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2*x^7*(20-4*x+331*x^2-88*x^3+1292*x^4-1356*x^5+2019*x^6 +264*x^7-2857*x^8+6472*x^9-7616*x^10+7462*x^11-7831*x^12+8326*x^13-5672*x^14 +1998*x^15-308*x^16-142*x^17+510*x^18-284*x^19-220*x^20+320*x^21-140*x^22 +24*x^23)/(1-x)^8, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
  • SageMath
    def p(x): return 20-4*x+331*x^2-88*x^3+1292*x^4-1356*x^5+2019*x^6 +264*x^7-2857*x^8+6472*x^9-7616*x^10+7462*x^11-7831*x^12+8326*x^13-5672*x^14 +1998*x^15-308*x^16-142*x^17+510*x^18-284*x^19-220*x^20+320*x^21-140*x^22 +24*x^23
    [( 2*x^7*p(x)/(1-x)^8 ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Apr 29 2022

Formula

Explicit formula (V. Kotesovec, 1992): a(n) = n^7 - 63*n^6 + 1879*n^5 - 34411*n^4 + 417178*n^3 - 3336014*n^2 + 16209916*n - 36693996, n >= 23.
Recurrence: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8), n >= 31.
G.f.: 2*x^7*(20 - 4*x + 331*x^2 - 88*x^3 + 1292*x^4 - 1356*x^5 + 2019*x^6 + 264*x^7 - 2857*x^8 + 6472*x^9 - 7616*x^10 + 7462*x^11 - 7831*x^12 + 8326*x^13 - 5672*x^14 + 1998*x^15 - 308*x^16 - 142*x^17 + 510*x^18 - 284*x^19 - 220*x^20 + 320*x^21 - 140*x^22 + 24*x^23)/(1 - x)^8.

A173775 Number of ways to place 5 nonattacking queens on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 10, 0, 882, 13312, 85536, 561440, 2276736, 9471744, 27991470, 85725696, 209107890, 525062144, 1116665944, 2437807104, 4691672964, 9234168960, 16462896030, 29919532544, 50215537658, 85687824384, 136944081500
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2010

Keywords

Crossrefs

Formula

a(n) = (1/120)*n^10 - (1/3)*n^9 + (143/24)*n^8 - (373/6*n^7) + (99377/240)*n^6 - (3603/2)*n^5 + (119627/24)*n^4 - (23833/3)*n^3 + (16342/3)*n^2 + ((1/24)*n^8 - (3/2)*n^7 + (1111/48)*n^6 - (391/2)*n^5 + (7595/8)*n^4 - 2487*n^3 + (8032/3)*n^2)*(-1)^n + ((9/2)*n^4 - 78*n^3 + 374*n^2)*cos(Pi*n/2) + ((8/3)*n^4 - (128/3)*n^3 + (656/3)*n^2)*cos(2*Pi*n/3) + (80/3)*n^2*cos(Pi*n/3) + (16/5)*n^2*cos(2*Pi*n/5) + (16/5)*n^2*cos(Pi*n/5)*(-1)^n.
Recurrence: a(n) = -3a(n-1) - 5a(n-2) - 5a(n-3) + 2a(n-4) + 17a(n-5) + 37a(n-6) + 49a(n-7) + 35a(n-8) - 16a(n-9) - 101a(n-10) - 185a(n-11) - 215a(n-12) - 139a(n-13) + 56a(n-14) + 321a(n-15) + 544a(n-16) + 588a(n-17) + 368a(n-18) - 99a(n-19) - 656a(n-20) - 1069a(n-21) - 1111a(n-22) - 689a(n-23) + 84a(n-24) + 929a(n-25) + 1488a(n-26) + 1506a(n-27) + 939a(n-28) - 939a(n-30) - 1506a(n-31) - 1488a(n-32) - 929a(n-33) - 84a(n-34) + 689a(n-35) + 1111a(n-36) + 1069a(n-37) + 656a(n-38) + 99a(n-39)-368a(n-40) - 588a(n-41) - 544a(n-42) - 321a(n-43) - 56a(n-44) + 139a(n-45) + 215a(n-46) + 185a(n-47) + 101a(n-48) + 16a(n-49) - 35a(n-50) - 49a(n-51) - 37a(n-52) - 17a(n-53) - 2a(n-54) + 5a(n-55) + 5a(n-56) + 3a(n-57) + a(n-58).

A319284 The profiles of the backtrack tree for the n queens problem, triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 4, 2, 1, 5, 12, 14, 12, 10, 1, 6, 20, 36, 46, 40, 4, 1, 7, 30, 76, 140, 164, 94, 40, 1, 8, 42, 140, 344, 568, 550, 312, 92, 1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680
Offset: 0

Views

Author

Peter Luschny, Sep 16 2018

Keywords

Comments

The profile (p_0, p_1, ..., p_n) is the number of nodes at each level of the tree.

Examples

			[1]
[1,  1]
[1,  2,  0]
[1,  3,  2,    0]
[1,  4,  6,    4,    2]
[1,  5,  12,  14,   12,    10]
[1,  6,  20,  36,   46,    40,     4]
[1,  7,  30,  76,  140,   164,    94,     40]
[1,  8,  42, 140,  344,   568,   550,    312,     92]
[1,  9,  56, 234,  732,  1614,  2292,   2038,   1066,    352]
[1, 10,  72, 364, 1400,  3916,  7552,   9632,   7828,   4040,    724]
[1, 11,  90, 536, 2468,  8492, 21362,  37248,  44148,  34774,  15116,  2680]
[1, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200]
		

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.

Crossrefs

Cf. A000170 (T(n,n)), A319283 (row sums), A319288 (indices of the row maxima).
Cf. A000012 (col. 0), A000027 (col. 1), A002378 (col. 2), A061989 and A079908 (col. 3), A061990 (col. 4), A061991 (col. 5), A061992 (col. 6), A061993 (col. 7), A172449 (col. 8).

Programs

  • Julia
    # See the link section.

A172214 Number of ways to place 5 nonattacking knights on a 5 X n board.

Original entry on oeis.org

1, 28, 259, 1968, 9386, 30842, 82738, 192336, 400277, 763984, 1360797, 2291056, 3681226, 5687022, 8496534, 12333352, 17459691, 24179516, 32841667, 43842984, 57631432, 74709226, 95635956, 121031712, 151580209
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(42 x^12 - 52 x^11 - 268 x^10 + 884 x^9 - 268 x^8 - 1188 x^7 + 2834 x^6 - 720 x^5 + 918 x^4 + 814 x^3 + 106 x^2 + 22 x + 1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (625n^5-8250n^4+57235n^3-242778n^2+608440n-705984)/24, n>=8.
G.f.: x * (42*x^12 -52*x^11 -268*x^10 +884*x^9 -268*x^8 -1188*x^7 +2834*x^6 -720*x^5 +918*x^4 +814*x^3 +106*x^2 +22*x +1) / (x-1)^6. - Vaclav Kotesovec, Mar 25 2010

A172204 Number of ways to place 5 nonattacking kings on a 5 X n board.

Original entry on oeis.org

0, 0, 15, 194, 1974, 9856, 34475, 95466, 224589, 468854, 893646, 1585850, 2656976, 4246284, 6523909, 9693986, 13997775, 19716786, 27175904, 36746514, 48849626, 63959000, 82604271, 105374074, 132919169
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2 * (259 * x^6 - 204 * x^5 + 1294 * x^4 + 622 * x^3 + 1035 * x^2 + 104 * x + 15)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (625n^5-9750n^4+66415n^3-247626n^2+504664n-446544)/24, n>=4.
G.f.: x^3*(259*x^6-204*x^5+1294*x^4+622*x^3+1035*x^2+104*x+15)/(x-1)^6. - Vaclav Kotesovec, Mar 24 2010

A172231 Number of ways to place 5 nonattacking wazirs on a 5 X n board.

Original entry on oeis.org

0, 2, 174, 1998, 10741, 38438, 107004, 251354, 522528, 990816, 1748883, 2914894, 4635639, 7089658, 10490366, 15089178, 21178634, 29095524, 39224013, 51998766
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

Wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (5 x^7 + 8 x^6 + 129 x^5 + 512 x^4 + 1323 x^3 + 984 x^2 + 162 x + 2) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (625*n^5-5750*n^4+23535*n^3-54202*n^2+70640*n-41616)/24, n>=4.
G.f.: x^2*(5*x^7+8*x^6+129*x^5+512*x^4+1323*x^3+984*x^2+162*x+2)/(x-1)^6. - Vaclav Kotesovec, Mar 25 2010

A172449 Number of ways to place 8 nonattacking queens on an 8 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 92, 1066, 7828, 44148, 195270, 707698, 2211868, 6120136, 15324708, 35312064, 75937606, 153942964, 296590536, 546621416, 968910732, 1659114170, 2754780934, 4449361442, 7009572728, 10796663102, 16292133888
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 03 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^7 (-72 x^31 + 360 x^30 - 360 x^29 - 1320 x^28 + 4208 x^27 - 9064 x^26 + 28358 x^25 - 65290 x^24 + 80160 x^23 - 41550 x^22 - 19482 x^21 + 62314 x^20 - 43912 x^19 - 81620 x^18 + 228424 x^17 - 261720 x^16 + 248114 x^15 - 336290 x^14 + 460564 x^13 - 453438 x^12 + 288474 x^11 - 135252 x^10 + 80270 x^9 - 85476 x^8 + 49676 x^7 - 23614 x^6 - 4768 x^5 - 1794 x^4 - 4344 x^3 - 1546 x^2 - 238 x - 92) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)

Formula

a(n) = n^8 - 84*n^7 + 3378*n^6 - 85078*n^5 + 1467563*n^4 - 17723656*n^3 + 145910074*n^2 - 745654756*n + 1802501048, for n >= 31. - Vaclav Kotesovec, Feb 03 2010
G.f.: x^8*(-72*x^31 + 360*x^30 - 360*x^29 - 1320*x^28 + 4208*x^27 - 9064*x^26 + 28358*x^25 - 65290*x^24 + 80160*x^23 - 41550*x^22 - 19482*x^21 + 62314*x^20 - 43912*x^19 - 81620*x^18 + 228424*x^17 - 261720*x^16 + 248114*x^15 - 336290*x^14 + 460564*x^13 - 453438*x^12 + 288474*x^11 - 135252*x^10 + 80270*x^9 - 85476*x^8 + 49676*x^7 - 23614*x^6 - 4768*x^5 - 1794*x^4 - 4344*x^3 - 1546*x^2 - 238*x - 92)/(x-1)^9. - Vaclav Kotesovec, Mar 20 2010

A172210 Number of ways to place 5 nonattacking bishops on a 5 X n board.

Original entry on oeis.org

1, 12, 143, 770, 3368, 12632, 38566, 98968, 222351, 450682, 843169, 1479116, 2460912, 3917228, 6006056, 8917888, 12878847, 18153806, 25049515, 33917724, 45158308, 59222392, 76615476, 97900560, 123701269, 154704978, 191665937, 235408396, 286829730, 346903564
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 x^20 - 4 x^19 + 8 x^18 - 12 x^17 - 48 x^16 + 140 x^15 - 158 x^14 + 208 x^13 + 134 x^12 - 932 x^11 + 1048*x^10 -182*x^9+ 436 * x^8 + 396 x^7 - 32 x^6 + 1288 * x^5 + 668 * x^4 + 72 * x^3 + 86 * x^2 + 6 * x + 1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (625n^5-11250n^4+98875n^3-515250n^2+1566016n-2194944)/24, n>=16.
G.f.: x*(2*x^20 -4*x^19 +8*x^18 -12*x^17 -48*x^16 +140*x^15 -158*x^14 +208*x^13 +134*x^12 -932*x^11 +1048*x^10 -182*x^9 +436*x^8 +396*x^7 -32*x^6 +1288*x^5 +668*x^4 +72*x^3 +86*x^2 +6*x+1)/(x-1)^6. - Vaclav Kotesovec, Mar 25 2010

A172223 Number of ways to place 5 nonattacking zebras on a 5 X n board.

Original entry on oeis.org

1, 252, 1925, 6534, 20502, 57710, 142312, 308254, 606051, 1105332, 1897899, 3100250, 4857000, 7344010, 10771530, 15387310, 21479725, 29380900, 39469835, 52175530, 67980110, 87421950, 111098800, 139670910, 173864155
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

Zebra is a (fairy chess) leaper [2,3].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(14 x^16 - 32 x^15 + 14 x^14 - 292 x^13 + 898 x^12 - 536 x^11 + 514 x^10 - 4232 x^9 + 7258 x^8 - 3296 x^7 + 266 x^6 - 2018 x^5 + 5148 x^4 - 1256 x^3 + 428 x^2 + 246 x+1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = 5*(125n^5-1250n^4+7575n^3-28426n^2+64000n-67056)/24, n>=12.
G.f.: x * (14*x^16 -32*x^15 +14*x^14 -292*x^13 +898*x^12 -536*x^11 +514*x^10 -4232*x^9 +7258*x^8 -3296*x^7 +266*x^6 -2018*x^5 +5148*x^4 -1256*x^3 +428*x^2 +246*x +1) / (x-1)^6. - Vaclav Kotesovec, Mar 25 2010
Showing 1-10 of 12 results. Next