A319284
The profiles of the backtrack tree for the n queens problem, triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 4, 2, 1, 5, 12, 14, 12, 10, 1, 6, 20, 36, 46, 40, 4, 1, 7, 30, 76, 140, 164, 94, 40, 1, 8, 42, 140, 344, 568, 550, 312, 92, 1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680
Offset: 0
[1]
[1, 1]
[1, 2, 0]
[1, 3, 2, 0]
[1, 4, 6, 4, 2]
[1, 5, 12, 14, 12, 10]
[1, 6, 20, 36, 46, 40, 4]
[1, 7, 30, 76, 140, 164, 94, 40]
[1, 8, 42, 140, 344, 568, 550, 312, 92]
[1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352]
[1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724]
[1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680]
[1, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200]
- D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.
- Peter Luschny, Rows n = 0..19, flattened
- Candida Bowtell and Peter Keevash, The n-queens problem, arXiv:2109.08083 [math.CO] 2021.
- V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
- Peter Luschny, Julia implementation of the n queens problem with profiles
- Michael Simkin, The number of n-queens configurations, arXiv:2107.13460 [math.CO] 2021.
- Wikipedia, Backtracking
- Wikipedia, Eight queens puzzle
A172449
Number of ways to place 8 nonattacking queens on an 8 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 92, 1066, 7828, 44148, 195270, 707698, 2211868, 6120136, 15324708, 35312064, 75937606, 153942964, 296590536, 546621416, 968910732, 1659114170, 2754780934, 4449361442, 7009572728, 10796663102, 16292133888
Offset: 1
-
CoefficientList[Series[x^7 (-72 x^31 + 360 x^30 - 360 x^29 - 1320 x^28 + 4208 x^27 - 9064 x^26 + 28358 x^25 - 65290 x^24 + 80160 x^23 - 41550 x^22 - 19482 x^21 + 62314 x^20 - 43912 x^19 - 81620 x^18 + 228424 x^17 - 261720 x^16 + 248114 x^15 - 336290 x^14 + 460564 x^13 - 453438 x^12 + 288474 x^11 - 135252 x^10 + 80270 x^9 - 85476 x^8 + 49676 x^7 - 23614 x^6 - 4768 x^5 - 1794 x^4 - 4344 x^3 - 1546 x^2 - 238 x - 92) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
A172206
Number of ways to place 7 nonattacking kings on a 7 X n board.
Original entry on oeis.org
0, 0, 24, 926, 37282, 394202, 2484382, 10999618, 38168864, 110899878, 281638602, 643766432, 1352358921, 2651129458, 4906381466, 8648792662, 14623854922, 23851793294, 37697787702, 57953320884, 86929476107, 127563008202, 183536011462, 259410007946, 360775279732
Offset: 1
-
CoefficientList[Series[x^2 (3387 x^10 - 13990 x^9 + 57102 x^8 - 55038 x^7 + 217860 x^6 + 137902 x^5 + 324486 x^4 + 120530 x^3 + 30546 x^2 + 734 x + 24) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
A172217
Number of ways to place 7 nonattacking knights on a 7 X n board.
Original entry on oeis.org
1, 78, 1758, 38588, 383246, 2135344, 8891854, 30108310, 86669806, 219845764, 504261973, 1065642840, 2104251027, 3924818982, 6973786593, 11884673662, 19532410762, 31097451768, 48140491605, 72688612756, 107333684073
Offset: 1
-
CoefficientList[Series[(252 x^18 - 272 x^17 - 5134 x^16 + 14468 x^15 + 19721 x^14 - 132666 x^13 + 174233 x^12 + 119440 x^11 - 540473 x^10 + 654954 x^9 - 89133 x^8 - 93778 x^7 + 497782 x^6 + 56796 x^5 + 119468 x^4 + 26652 x^3 + 1162 x^2 + 70 x + 1) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
A172234
Number of ways to place 7 nonattacking wazirs on a 7 X n board.
Original entry on oeis.org
0, 2, 1478, 50726, 573797, 3581924, 15516804, 52550366, 149162199, 370817854, 831571604, 1717417198, 3316210152, 6054985120, 10545491888, 17638773534, 28489610297, 44631652698, 68064067456, 101350519742, 147731315314, 211249526076, 296891922604, 410745537182
Offset: 1
-
CoefficientList[Series[x (7 x^11 - 48 x^10 + 370 x^9 + 40 x^8 + 8541 x^7 + 45282 x^6 + 190420 x^5 + 329248 x^4 + 209261 x^3 + 38958 x^2 + 1462 x+2) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
A269133
Number of ways to place m nonattacking queens on an m X n board, 1 <= m <= n (triangular array).
Original entry on oeis.org
1, 2, 0, 3, 2, 0, 4, 6, 4, 2, 5, 12, 14, 12, 10, 6, 20, 36, 46, 40, 4, 7, 30, 76, 140, 164, 94, 40, 8, 42, 140, 344, 568, 550, 312, 92, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200
Offset: 1
The triangular array begins:
n\m 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 2 0
3 3 2 0
4 4 6 4 2
5 5 12 14 12 10
6 6 20 36 46 40 4
7 7 30 76 140 164 94 40
8 8 42 140 344 568 550 312 92
9 9 56 234 732 1614 2292 2038 1066 352
10 10 72 364 1400 3916 7552 9632 7828 4040 724
11 11 90 536 2468 8492 21362 37248 44148 34774 15116 2680
12 12 110 756 4080 16852 52856 120104 195270 222720 160964 68264 14200
...
-
{A269133(m, n, B=[], t=if(#B, setminus(n, Set(concat(B+t=[-#B..-1], B-t))), n=[1..n]))= if(#B < m-1, vecsum([A269133(m, setminus(n, [t]), concat(B,t)) | t<-t]), #t)} \\ M. F. Hasler, Jan 11 2022
Showing 1-6 of 6 results.
Comments