cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062027 a(1) = a(2) = a(3) = 1 and a(n) = 24*binomial(n+1, 5) + n*(n^2 - n + 6) for n > 3.

Original entry on oeis.org

1, 1, 1, 96, 274, 720, 1680, 3520, 6750, 12048, 20284, 32544, 50154, 74704, 108072, 152448, 210358, 284688, 378708, 496096, 640962, 817872, 1031872, 1288512, 1593870, 1954576, 2377836, 2871456, 3443866, 4104144, 4862040, 5728000
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Comments

Previous name: a(1) = a(2) = a(3) = 1; and for n>3 a(n) = 1*2*3*4 + 2*3*4*5 + 3*4*5*6 + ... + (n-1)*n*1*2 + n*1*2*3, the sum of the cyclic product of terms taken four at a time, final term being n*1*2*3 = 6n.

Examples

			a(5) = 1*2*3*4 + 2*3*4*5 + 3*4*5*1 + 4*5*1*2 + 5*1*2*3 = 274.
		

Programs

  • Mathematica
    Table[24*Binomial[n+1,5] +n*(n^2-n+6) -5*(2^n-1)*Boole[n<4], {n,40}] (* G. C. Greubel, May 05 2022 *)
  • PARI
    a(n) = { if (n<=3, 1, (n+1)*n*(n-1)*(n-2)*(n-3)/5 +n*(n^2-n+6)) } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [24*binomial(n+1,5) +n*(n^2-n+6) -5*(2^n-1)*bool(n<4) for n in (1..40)] # G. C. Greubel, May 05 2022

Formula

a(n) = (n+1)*(n)*(n-1)*(n-2)*(n-3)/5 + n*(n^2 - n + 6), for n>3.
From G. C. Greubel, May 05 2022: (Start)
G.f.: -5*x*(1 + 3*x + 7*x^2) + 2*x*(3 - 10*x + 15*x^2 + 4*x^4)/(1-x)^6.
E.g.f.: (1/5)*x*(30 + 10*x + 5*x^2 + 5*x^3 + x^4)*exp(x) - (5/6)*x*(6 + 9*x + 7*x^2). (End)

Extensions

More terms from Jason Earls, Jun 07 2001
Term a(4) corrected by Harry J. Smith, Jul 30 2009
Name changed by G. C. Greubel, May 05 2022