A062042 a(1) = 2, a(n) = least number greater than a(n-1) such that a(n-1) + a(n) is a prime.
2, 3, 4, 7, 10, 13, 16, 21, 22, 25, 28, 31, 36, 37, 42, 47, 50, 51, 52, 55, 58, 69, 70, 79, 84, 89, 90, 91, 100, 111, 112, 115, 118, 121, 130, 133, 136, 141, 142, 151, 156, 157, 160, 171, 176, 177, 182, 185, 188, 191, 192, 197, 200, 201, 208, 211, 220, 223, 226
Offset: 1
Examples
a(5) = 10 and the least number more than 10 that gives a prime when increased by 10 is 13, 13 + 10 = 23.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A062044.
Programs
-
Maple
A[1]:= 2; for n from 2 to 100 do A[n]:= nextprime(2*A[n-1])-A[n-1] od: seq(A[n],n=1..100); # Robert Israel, Aug 28 2018
-
Mathematica
a=2;lst={a};Do[b=a+1;While[ !PrimeQ[a+b],b++ ];AppendTo[lst,b];a=b,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *) NestList[NextPrime[2#]-#&,2,60] (* Harvey P. Dale, Jul 20 2011 *)
-
PARI
FirstTerms(n)={my(x=2,y,a=vector(n),j=1);a[1]=2;while(j++<=n,y=x+1;while(!isprime(x+y),y++);x=y;a[j]=y);return(a)} \\ R. J. Cano, Jan 18 2017
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
Comments