A062058 Numbers with 8 odd integers in their Collatz (or 3x+1) trajectory.
25, 49, 50, 51, 98, 99, 100, 101, 102, 196, 197, 198, 200, 202, 204, 205, 217, 392, 394, 396, 397, 400, 404, 405, 408, 410, 433, 434, 435, 441, 475, 784, 788, 789, 792, 794, 800, 808, 810, 816, 820, 821, 833, 857, 866, 867, 868, 869, 870, 875, 882, 883, 950, 951, 953
Offset: 1
Keywords
Examples
The Collatz trajectory of 25 is (25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1), which contains 8 odd integers.
References
- J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for 2-automatic sequences.
Programs
-
Haskell
import Data.List (elemIndices) a062058 n = a062058_list !! (n-1) a062058_list = map (+ 1) $ elemIndices 8 a078719_list -- Reinhard Zumkeller, Oct 08 2011
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countOdd[lst_] := Length[Select[lst, OddQ]]; Select[Range[1000], countOdd[Collatz[#]] == 8 &] (* T. D. Noe, Dec 03 2012 *)
Comments