A062060 Numbers with 10 odd integers in their Collatz (or 3x+1) trajectory.
43, 86, 87, 89, 172, 173, 174, 177, 178, 179, 344, 346, 348, 349, 354, 355, 356, 357, 358, 385, 423, 688, 692, 693, 696, 698, 705, 708, 709, 710, 712, 714, 716, 717, 729, 761, 769, 770, 771, 777, 846, 847, 1376, 1384, 1386, 1392, 1393, 1396, 1397, 1410, 1411, 1415
Offset: 1
Examples
The Collatz trajectory of 43 is (43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1), which contains 10 odd integers.
References
- J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for 2-automatic sequences.
Programs
-
Haskell
import Data.List (elemIndices) a062060 n = a062060_list !! (n-1) a062060_list = map (+ 1) $ elemIndices 10 a078719_list -- Reinhard Zumkeller, Oct 08 2011
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countOdd[lst_] := Length[Select[lst, OddQ]]; Select[Range[1000], countOdd[Collatz[#]] == 10 &] (* T. D. Noe, Dec 03 2012 *)
-
Python
def a(n): l=[n] while True: if n%2==0: n//=2 else: n = 3*n + 1 if n not in l: l.append(n) if n<2: break else: break return len([1 for i in l if i%2]) print([n for n in range(40, 1501) if a(n)==10]) # Indranil Ghosh, Apr 14 2017
Comments