cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062103 Number of paths by which an unpromoted knight (keima) of Shogi can move to various squares on infinite board, if it starts from its origin square, the second leftmost square of the back rank.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 14
Offset: 1

Views

Author

Antti Karttunen, May 30 2001

Keywords

Comments

Table formatted as a square array shows the top-left corner of the infinite board. This is an aerated and sligthly skewed variant of Catalan's triangle A009766.

Crossrefs

A009766, A049604, A062104, trinv given at A054425.

Programs

  • Maple
    [seq(ShoogiKnightSeq(j),j=1..120)]; ShoogiKnightSeq := n -> ShoogiKnightTriangle(trinv(n-1)-1,(n-((trinv(n-1)*(trinv(n-1)-1))/2))-1);
    ShoogiKnightTriangle := proc(r,m) option remember; if(m < 0) then RETURN(0); fi; if(r < 0) then RETURN(0); fi; if(m > r) then RETURN(0); fi; if((1 = r) and (0 = m)) then RETURN(1); fi; RETURN(ShoogiKnightTriangle(r-3,m-2) + ShoogiKnightTriangle(r-1,m-2)); end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
    ShoogiKnightSeq[n_] := ShoogiKnightTriangle[trinv[n - 1] - 1, (n - ((trinv[n - 1]*(trinv[n - 1] - 1))/2)) - 1];
    ShoogiKnightTriangle[r_, m_] := ShoogiKnightTriangle[r, m] = Which[m < 0, 0, r < 0, 0, m > r, 0, r == 1 && m == 0, 1, True, ShoogiKnightTriangle[r - 3, m - 2] + ShoogiKnightTriangle[r - 1, m - 2]];
    Array[ShoogiKnightSeq, 120] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)