cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A009766 Catalan's triangle T(n,k) (read by rows): each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 14, 1, 5, 14, 28, 42, 42, 1, 6, 20, 48, 90, 132, 132, 1, 7, 27, 75, 165, 297, 429, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934
Offset: 0

Views

Author

Keywords

Comments

The entries in this triangle (in its many forms) are often called ballot numbers.
T(n,k) = number of standard tableaux of shape (n,k) (n > 0, 0 <= k <= n). Example: T(3,1) = 3 because we have 134/2, 124/3 and 123/4. - Emeric Deutsch, May 18 2004
T(n,k) is the number of full binary trees with n+1 internal nodes and jump-length k. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given ordered tree is called the jump-length. - Emeric Deutsch, Jan 18 2007
The k-th diagonal from the right (k=1, 2, ...) gives the sequence obtained by asking in how many ways can we toss a fair coin until we first get k more heads than tails. The k-th diagonal has formula k(2m+k-1)!/(m!(m+k)!) and g.f. (C(x))^k where C(x) is the generating function for the Catalan numbers, (1-sqrt(1-4*x))/(2*x). - Anthony C Robin, Jul 12 2007
T(n,k) is also the number of order-decreasing and order-preserving full transformations (of an n-element chain) of waist k (waist (alpha) = max(Im(alpha))). - Abdullahi Umar, Aug 25 2008
Formatted as an upper right triangle (see tables) a(c,r) is the number of different triangulated planar polygons with c+2 vertices, with triangle degree c-r+1 for the same vertex X (c=column number, r=row number, with c >= r >= 1). - Patrick Labarque, Jul 28 2010
The triangle sums, see A180662 for their definitions, link Catalan's triangle, its mirror is A033184, with several sequences, see crossrefs. - Johannes W. Meijer, Sep 22 2010
The m-th row of Catalan's triangle consists of the unique nonnegative differences of the form binomial(m+k,m)-binomial(m+k,m+1) with 0 <= k <= m (See Links). - R. J. Cano, Jul 22 2014
T(n,k) is also the number of nondecreasing parking functions of length n+1 whose maximum element is k+1. For example T(3,2) = 5 because we have (1,1,1,3), (1,1,2,3), (1,2,2,3), (1,1,3,3), (1,2,3,3). - Ran Pan, Nov 16 2015
T(n,k) is the number of Dyck paths from (0,0) to (n+2,n+2) which start with n-k+2 east steps and touch the diagonal y=x only on the last north step. - Felipe Rueda, Sep 18 2019
T(n-1,k) for k < n is number of well-formed strings of n parenthesis pairs with prefix of exactly n-k opening parenthesis; T(n,n) = T(n,n-1). - Hermann Stamm-Wilbrandt, May 02 2021

Examples

			Triangle begins in row n=0 with 0 <= k <= n:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,   5;
  1, 4,  9,  14,  14;
  1, 5, 14,  28,  42,   42;
  1, 6, 20,  48,  90,  132,  132;
  1, 7, 27,  75, 165,  297,  429,  429;
  1, 8, 35, 110, 275,  572, 1001, 1430, 1430;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862;
		

References

  • William Feller, Introduction to Probability Theory and its Applications, vol. I, ed. 2, chap. 3, sect. 1,2.
  • Ki Hang Kim, Douglas G. Rogers, and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013).
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6, Eq. 22, p. 451.
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146.
  • M. Bellon, Query 5467, L'Intermédiaire des Mathématiciens, 4 (1925), 11; H. Ory, 4 (1925), 120. - N. J. A. Sloane, Mar 09 2022
  • Andrzej Proskurowski and Ekaputra Laiman, Fast enumeration, ranking, and unranking of binary trees. Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982). Congr. Numer. 35 (1982), 401-413.MR0725898 (85a:68152).
  • M. Welsch, Note #371, L'Intermédiaire des Mathématiciens, 2 (1895), pp. 235-237. - N. J. A. Sloane, Mar 02 2022

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A008315, A028364, A030237, A047072, A053121, A059365, A062103, A099039, A106566, A130020, A140344.
Sums of the shallow diagonals give A001405, central binomial coefficients: 1=1, 1=1, 1+1=2, 1+2=3, 1+3+2=6, 1+4+5=10, 1+5+9+5=20, ...
Row sums as well as the sums of the squares of the shallow diagonals give Catalan numbers (A000108).
Reflected version of A033184.
Triangle sums (see the comments): A000108 (Row1), A000957 (Row2), A001405 (Kn11), A014495 (Kn12), A194124 (Kn13), A030238 (Kn21), A000984 (Kn4), A000958 (Fi2), A165407 (Ca1), A026726 (Ca4), A081696 (Ze2).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],m->Binomial(n+m,n)*(n-m+1)/(n+1)))); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a009766 n k = a009766_tabl !! n !! k
    a009766_row n = a009766_tabl !! n
    a009766_tabl = iterate (\row -> scanl1 (+) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    [[Binomial(n+k,n)*(n-k+1)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
    
  • Maple
    A009766 := proc(n,k) binomial(n+k,n)*(n-k+1)/(n+1); end proc:
    seq(seq(A009766(n,k), k=0..n), n=0..10); # R. J. Mathar, Dec 03 2010
  • Mathematica
    Flatten[NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
    T[n_, k_] := T[n, k] = Which[k == 0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1] ]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2016 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n+1+k, k) * (n+1-k) / (n+1+k) )}; /* Michael Somos, Oct 17 2006 */
    
  • PARI
    b009766=(n1=0,n2=100)->{my(q=if(!n1,0,binomial(n1+1,2)));for(w=n1,n2,for(k=0,w,write("b009766.txt",1*q" "1*(binomial(w+k,w)-binomial(w+k,w+1)));q++))} \\ R. J. Cano, Jul 22 2014
    
  • Python
    from math import comb, isqrt
    def A009766(n): return comb((a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))+(b:=n-comb(a+1,2)),b)*(a-b+1)//(a+1) # Chai Wah Wu, Nov 12 2024
  • Sage
    @CachedFunction
    def ballot(p,q):
        if p == 0 and q == 0: return 1
        if p < 0 or p > q: return 0
        S = ballot(p-2, q) + ballot(p, q-2)
        if q % 2 == 1: S += ballot(p-1, q-1)
        return S
    A009766 = lambda n, k: ballot(2*k, 2*n)
    for n in (0..7): [A009766(n, k) for k in (0..n)]  # Peter Luschny, Mar 05 2014
    
  • Sage
    [[binomial(n+k,n)*(n-k+1)/(n+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 07 2019
    

Formula

T(n, m) = binomial(n+m, n)*(n-m+1)/(n+1), 0 <= m <= n.
G.f. for column m: (x^m)*N(2; m-1, x)/(1-x)^(m+1), m >= 0, with the row polynomials from triangle A062991 and N(2; -1, x) := 1.
G.f.: C(t*x)/(1-x*C(t*x)) = 1 + (1+t)*x + (1+2*t+2*t^2)*x^2 + ..., where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function. - Emeric Deutsch, May 18 2004
Another version of triangle T(n, k) given by [1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 1, 0; 1, 2, 2, 0; 1, 3, 5, 5, 0; 1, 4, 9, 14, 14, 0; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 16 2005
O.g.f. (with offset 1) is the series reversion of x*(1+x*(1-t))/(1+x)^2 = x - x^2*(1+t) + x^3*(1+2*t) - x^4*(1+3*t) + ... . - Peter Bala, Jul 15 2012
Sum_{k=0..floor(n/2)} T(n-k+p-1, k+p-1) = A001405(n+2*p-2) - C(n+2*p-2, p-2), p >= 1. - Johannes W. Meijer, Oct 03 2013
Let A(x,t) denote the o.g.f. Then 1 + x*d/dx(A(x,t))/A(x,t) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ... is the o.g.f. for A059481. - Peter Bala, Jul 21 2015
The n-th row polynomial equals the n-th degree Taylor polynomial of the function (1 - 2*x)/(1 - x)^(n+2) about 0. For example, for n = 4, (1 - 2*x)/(1 - x)^6 = 1 + 4*x + 9*x^2 + 14*x^3 + 14*x^4 + O(x^5). - Peter Bala, Feb 18 2018
T(n,k) = binomial(n + k + 1, k) - 2*binomial(n + k, k - 1), for 0 <= k <= n. - David Callan, Jun 15 2022

A100100 Triangle T(n,k) = binomial(2*n-k-1, n-k) read by rows.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 6, 3, 1, 35, 20, 10, 4, 1, 126, 70, 35, 15, 5, 1, 462, 252, 126, 56, 21, 6, 1, 1716, 924, 462, 210, 84, 28, 7, 1, 6435, 3432, 1716, 792, 330, 120, 36, 8, 1, 24310, 12870, 6435, 3003, 1287, 495, 165, 45, 9, 1, 92378, 48620, 24310, 11440, 5005, 2002
Offset: 0

Views

Author

Paul Barry, Nov 08 2004

Keywords

Comments

Sometimes called a Catalan triangle, although there are many other triangles that carry that name - see A009766, A008315, A028364, A033184, A053121, A059365, A062103.
Number of nodes of outdegree k in all ordered trees with n edges. Equivalently, number of ascents of length k in all Dyck paths of semilength n. Example: T(3,2) = 3 because the Dyck paths of semilength 3 are UDUDUD, UD(UU)DD, (UU)DDUD, (UU)DUDD and UUUDDD, where U = (1,1), D = (1,-1), the ascents of length 2 being shown between parentheses. - Emeric Deutsch, Nov 19 2006
Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A088218 and g(x) is the g.f. of A000108. - Philippe Deléham, Jan 23 2010
T(n,k) is the number of nonnegative paths of upsteps U = (1,1) and downsteps D = (1,-1) of length 2*n with k returns to ground level, the horizontal line through the initial vertex. Example: T(2,1) = 2 counts UDUU, UUDD. Also, T(n,k) = number of these paths whose last descent has length k, that is, k downsteps follow the last upstep. Example: T(2,1) = 2 counts UUUD, UDUD. - David Callan, Nov 21 2011
Belongs to the hitting-time subgroup of the Riordan group. Multiplying this triangle by the square Pascal matrix gives A092392 read as a square array. See the example below. - Peter Bala, Nov 03 2015

Examples

			From _Paul Barry_, Mar 15 2010: (Start)
Triangle begins in row n=0 with columns 0<=k<=n as:
    1;
    1,   1;
    3,   2,   1;
   10,   6,   3,  1;
   35,  20,  10,  4,  1;
  126,  70,  35, 15,  5, 1;
  462, 252, 126, 56, 21, 6, 1;
Production matrix begins
  1, 1;
  2, 1, 1;
  3, 1, 1, 1;
  4, 1, 1, 1, 1;
  5, 1, 1, 1, 1, 1;
  6, 1, 1, 1, 1, 1, 1;
  7, 1, 1, 1, 1, 1, 1, 1;
(End)
A092392 as a square array = A100100 * square Pascal matrix:
/1   1  1  1 ...\   / 1          \/1 1  1  1 ...\
|2   3  4  5 ...|   | 1 1        ||1 2  3  4 ...|
|6  10 15 21 ...| = | 3 2 1      ||1 3  6 10 ...|
|20 35 56 84 ...|   |10 6 3 1    ||1 4 10 20 ...|
|70 ...         |   |35 ...      ||1 ...        |
- _Peter Bala_, Nov 03 2015
		

Crossrefs

Row sums are A000984. Equivalent to A092392, to which A088218 has been added as a first column. Columns include A088218, A000984, A001700, A001791, A002054, A002694. Diagonal sums are A100217. Matrix inverse is A100218.
Cf. A059481 (mirrored). Cf. A033184, A094527, A113955.

Programs

  • Haskell
    a100100 n k = a100100_tabl !! n !! n
    a100100_row n = a100100_tabl !! n
    a100100_tabl = [1] : f a092392_tabl where
       f (us : wss'@(vs : wss)) = (vs !! 1 : us) : f wss'
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Magma
    /* As triangle */ [[Binomial(2*n - k - 1, n - k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 21 2018
  • Maple
    A100100 := proc(n,k)
        binomial(2*n-k-1,n-1) ;
    end proc:
    seq(seq(A100100(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
  • Mathematica
    Flatten[Table[Binomial[2 n - k - 1, n - k], {n, 0, 11}, {k, 0, n}]] (* Vincenzo Librandi, Nov 21 2018 *)
  • PARI
    T(n,k)=binomial(2*n-k-1,n-k) \\ Charles R Greathouse IV, Jan 16 2012
    

Formula

From Peter Bala, Sep 06 2015: (Start)
Matrix product A094527 * P^(-1) = A113955 * P^(-2), where P denotes Pascal's triangle A007318.
Essentially, the logarithmic derivative of A033184. (End)
Let column(k) = [T(n, k), n >= k], then the generating function for column(k) is (2/(sqrt(1-4*x)+1))^(k-1)/sqrt(1-4*x). - Peter Luschny, Mar 19 2021
O.g.f. row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k, i.e. o.g.f. of the triangle, G(z,x) = 1/((2 - c(z))*(1 - x*z*c(z))), with c the o.g.f. of A000108 (Catalan). See the Riordan coomment by Philippe Deléham above. - Wolfdieter Lang, Apr 06 2021

A062105 Square array read by antidiagonals: number of ways a pawn-like piece (with the initial 2-step move forbidden and starting from any square on the back rank) can end at various squares on an infinite chessboard.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 3, 8, 13, 1, 3, 9, 22, 35, 1, 3, 9, 26, 61, 96, 1, 3, 9, 27, 75, 171, 267, 1, 3, 9, 27, 80, 216, 483, 750, 1, 3, 9, 27, 81, 236, 623, 1373, 2123, 1, 3, 9, 27, 81, 242, 694, 1800, 3923, 6046, 1, 3, 9, 27, 81, 243, 721, 2038, 5211, 11257, 17303, 1, 3, 9, 27
Offset: 0

Views

Author

Antti Karttunen, May 30 2001

Keywords

Comments

Table formatted as a square array shows the top-left corner of the infinite board.
The same array can also be constructed by the method used for constructing A217536, except with a top row consisting entirely of 1's instead of the natural numbers. - WG Zeist, Aug 25 2024

Examples

			Array begins:
 1       1       1       1       1       1       1       1       1       1       1
 2       3       3       3       3       3       3       3       3       3       3
 5       8       9       9       9       9       9       9       9       9 ...
 13      22      26      27      27      27      27      27      27 ...
 35      61      75      80      81      81      81 ...
 96      171     216     236     242     243 ...
 267     483     623     694     721 ...
 750     1373    1800    2038 ...
 2123    3923    5211 ...
 6046    11257 ...
 17303  ...
 ...
Formatted as a triangle:
 1,
 1, 2,
 1, 3, 5,
 1, 3, 8, 13,
 1, 3, 9, 22, 35,
 1, 3, 9, 26, 61, 96,
 1, 3, 9, 27, 75, 171, 267,
 1, 3, 9, 27, 80, 216, 483, 750,
 1, 3, 9, 27, 81, 236, 623, 1373, 2123,
 1, 3, 9, 27, 81, 242, 694, 1800, 3923, 6046,
 1, 3, 9, 27, 81, 243, 721, 2038, 5211, 11257, 17303,
 ...
		

Crossrefs

A005773 gives the left column of the table. A000244 (powers of 3) gives the diagonal of the table. Variant of A062104. Cf. also A062103, A020474, A217536.

Programs

  • Maple
    [seq(CPTVSeq(j),j=0..91)]; CPTVSeq := n -> ChessPawnTriangleV( (2+(n-((trinv(n)*(trinv(n)-1))/2))), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) );
    ChessPawnTriangleV := proc(r,c) option remember; if(r < 2) then RETURN(0); fi; if(c < 1) then RETURN(0); fi; if(2 = r) then RETURN(1); fi; RETURN(ChessPawnTriangleV(r-1,c-1)+ChessPawnTriangleV(r-1,c)+ChessPawnTriangleV(r-1,c+1)); end;
    M:=12; T:=Array(0..M,0..M,0);
    T[0,0]:=1; T[1,1]:=1;
    for i from 1 to M do T[i,0]:=0; od:
    for n from 2 to M do for k from 1 to n do
    T[n,k]:= T[n,k-1]+T[n-1,k-1]+T[n-2,k-1];
    od: od;
    rh:=n->[seq(T[n,k],k=0..n)];
    for n from 0 to M do lprint(rh(n)); od: # N. J. A. Sloane, Apr 11 2020
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 1 || k < 1, 0, If[n == 1, 1, T[n - 1, k - 1] + T[n - 1, k] + T[n - 1, k + 1]]]; Table[T[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2016, adapted from PARI *)
  • PARI
    T(n,k)=if(n<1 || k<1,0,if(n==1,1,T(n-1,k-1)+T(n-1,k)+T(n-1,k+1)))

Extensions

Edited by N. J. A. Sloane, May 22 2014

A062104 Square array read by antidiagonals: number of ways a black pawn (starting at any square on the second rank) can (theoretically) end at various squares on an infinite chessboard.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 3, 9, 15, 0, 1, 3, 10, 25, 40, 0, 1, 3, 10, 29, 69, 109, 0, 1, 3, 10, 30, 84, 193, 302, 0, 1, 3, 10, 30, 89, 242, 544, 846, 0, 1, 3, 10, 30, 90, 263, 698, 1544, 2390, 0, 1, 3, 10, 30, 90, 269, 774, 2016, 4406, 6796, 0, 1, 3, 10, 30, 90, 270
Offset: 0

Views

Author

Antti Karttunen, May 30 2001

Keywords

Comments

Table formatted as a square array shows the top-left corner of the infinite board.

Examples

			Array begins:
0       0       0       0       0       0       0       0       0       0       0       0 ...
1       1       1       1       1       1       1       1       1       1       1 ...
2       3       3       3       3       3       3       3       3       3 ...
6       9       10      10      10      10      10      10      10 ...
15      25      29      30      30      30      30      30 ...
40      69      84      89      90      90      90 ...
109     193     242     263     269     270 ...
302     544     698     774 ...
846     1544    2016 ...
2390    4406 ...
6796 ...
		

Crossrefs

A062106 gives the left column and A062107 the diagonal of the table. A062105 is a more regular variant. Cf. also A062103. Trinv given at A054425.

Programs

  • Maple
    [seq(CPTSeq(j),j=0..91)]; CPTSeq := n -> ChessPawnTriangle( (1+(n-((trinv(n)*(trinv(n)-1))/2))), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) );
    ChessPawnTriangle := proc(r,c) option remember; if(r < 2) then RETURN(0); fi; if(c < 1) then RETURN(0); fi; if(2 = r) then RETURN(1); fi; if(4 = r) then RETURN(1+ChessPawnTriangle(r-1,c-1)+ChessPawnTriangle(r-1,c)+ChessPawnTriangle(r-1,c+1));
    else RETURN(ChessPawnTriangle(r-1,c-1)+ChessPawnTriangle(r-1,c)+ChessPawnTriangle(r-1,c+1)); fi; end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
    CPTSeq[n_] := ChessPawnTriangle[(1 + (n - ((trinv[n]*(trinv[n] - 1))/2))), ((((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1)];
    ChessPawnTriangle[r_, c_] := ChessPawnTriangle[r, c] = Which[r < 2, 0, c < 1, 0, 2 == r, 1, 4 == r, 1 + ChessPawnTriangle[r - 1, c - 1] + ChessPawnTriangle[r - 1, c] + ChessPawnTriangle[r - 1, c + 1], True, ChessPawnTriangle[r - 1, c - 1] + ChessPawnTriangle[r - 1, c] + ChessPawnTriangle[r - 1, c + 1]];
    Table[CPTSeq[j], {j, 0, 91}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)

Extensions

Edited by N. J. A. Sloane, May 22 2014
Showing 1-4 of 4 results.