cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A217730 Expansion of (1+2*x-x^3)/(1-4*x^2+2*x^4).

Original entry on oeis.org

1, 2, 4, 7, 14, 24, 48, 82, 164, 280, 560, 956, 1912, 3264, 6528, 11144, 22288, 38048, 76096, 129904, 259808, 443520, 887040, 1514272, 3028544, 5170048, 10340096, 17651648, 35303296, 60266496, 120532992, 205762688, 411525376, 702517760, 1405035520, 2398545664, 4797091328, 8189147136, 16378294272, 27959497216
Offset: 0

Views

Author

Philippe Deléham, Mar 22 2013

Keywords

Comments

In general, a(n,j,m) = Sum_{r=1..m} (2^n*(1-(-1)^r)*cos(Pi*r/(m+1))^n*cot(Pi*r/(2*(m+1)))*sin(j*Pi*r/(m+1)))/(m+1) gives the number of paths of length n starting at the j-th node on the path graph P_m. Here we have the case m=7 and j=3. - Herbert Kociemba, Sep 17 2020

Crossrefs

First differences are in A062113.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x-x^3)/(1-4*x^2+2*x^4))); // Bruno Berselli, Mar 22 2013
    
  • Mathematica
    CoefficientList[Series[(1 + 2 x - x^3)/(1 - 4 x^2 + 2 x^4), {x, 0, 40}], x] (* Bruno Berselli, Mar 22 2013 *)
    a[n_,j_,m_]:=Sum[(2^(n+1)Cos[Pi r/(m+1)]^n Cot[Pi r/(2(m+1))] Sin[j Pi r/(m+1)])/(m+1),{r,1,m,2}]
    Table[a[n,3,7],{n,0,40}]//Round (* Herbert Kociemba, Sep 17 2020 *)
  • Maxima
    makelist(coeff(taylor((1+2*x-x^3)/(1-4*x^2+2*x^4), x, 0, n), x, n), n, 0, 40); /* Bruno Berselli, Mar 22 2013 */

Formula

G.f.: (1+x)*(1+x-x^2)/(1-4*x^2+2*x^4).
a(n) = Sum_{k=0..n} A216232(n-k,k).
a(n) = 4*a(n-2) - 2*a(n-4) for n>=4, a(0)=1, a(1)=2, a(2)=4, a(3)=7.
a(2*n) = A007070(n), a(2*n-1) = a(2*n)/2 = A007070(n)/2.
a(n)*a(n+1)-a(n-1)*a(n+2) = (1-(-1)^n)*2^floor(n/2-1) for n>0. - Bruno Berselli, Mar 22 2013
a(n) = Sum_{r=1..7} (2^n*(1-(-1)^r)*cos(Pi*r/8)^n*cot(Pi*r/16)*sin(3*Pi*r/8))/8. - Herbert Kociemba, Sep 17 2020
Showing 1-1 of 1 results.