A216232 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 3 or if k-n >= 5, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 4, 6, 3, 0, 0, 5, 10, 9, 0, 0, 0, 5, 15, 19, 9, 0, 0, 0, 0, 20, 34, 28, 0, 0, 0, 0, 0, 20, 54, 62, 28, 0, 0, 0, 0, 0, 0, 74, 116, 90, 0, 0, 0, 0, 0, 0, 0, 74, 190, 206, 90, 0, 0, 0, 0, 0, 0, 0, 0, 264, 396, 296, 0, 0, 0, 0, 0, 0, 0, 0, 0, 264, 660, 692, 296, 0, 0, 0, 0, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ... row n=0 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, ... row n=1 1, 3, 6, 10, 15, 20, 20, 0, 0, 0, 0, ... row n=2 0, 3, 9, 19, 34, 54, 74, 74, 0, 0, 0, ... row n=3 0, 0, 9, 28, 62, 116, 190, 264, 264, 0, 0, ... row n=4 0, 0, 0, 28, 90, 206, 396, 660, 924, 924, 0, ... row n=5 ... Array, read by rows, with 0 omitted: 1, 1, 1, 1, 1 1, 2, 3, 4, 5, 5 1, 3, 6, 10, 15, 20, 20 3, 9, 19, 34, 54, 74, 74 9, 28, 62, 116, 190, 264, 264 28, 90, 206, 396, 660, 924, 924 90, 296, 692, 1352, 2276, 3200, 3200 ...
References
- E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89.
Links
- E. Lucas, Théorie des nombres, Gauthier-Villars, Paris 1891, Tome 1, p. 89.
Comments