cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216232 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 3 or if k-n >= 5, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 4, 6, 3, 0, 0, 5, 10, 9, 0, 0, 0, 5, 15, 19, 9, 0, 0, 0, 0, 20, 34, 28, 0, 0, 0, 0, 0, 20, 54, 62, 28, 0, 0, 0, 0, 0, 0, 74, 116, 90, 0, 0, 0, 0, 0, 0, 0, 74, 190, 206, 90, 0, 0, 0, 0, 0, 0, 0, 0, 264, 396, 296, 0, 0, 0, 0, 0, 0, 0, 0, 0, 264, 660, 692, 296, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1, 1,  1,  1,   0,   0,   0,   0,   0, 0, ... row n=0
  1, 2, 3,  4,  5,   5,   0,   0,   0,   0, 0, ... row n=1
  1, 3, 6, 10, 15,  20,  20,   0,   0,   0, 0, ... row n=2
  0, 3, 9, 19, 34,  54,  74,  74,   0,   0, 0, ... row n=3
  0, 0, 9, 28, 62, 116, 190, 264, 264,   0, 0, ... row n=4
  0, 0, 0, 28, 90, 206, 396, 660, 924, 924, 0, ... row n=5
  ...
Array, read by rows, with 0 omitted:
   1,   1,   1,   1,    1
   1,   2,   3,   4,    5,    5
   1,   3,   6,  10,   15,   20,   20
        3,   9,  19,   34,   54,   74,   74
             9,  28,   62,  116,  190,  264,  264
                 28,   90,  206,  396,  660,  924,  924
                       90,  296,  692, 1352, 2276, 3200, 3200
  ...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89.

Crossrefs

Formula

T(n,n) = A094817(n), for n > 0.
T(n+1,n) = T(n+2,n) = A094803(n).
T(n,n+1) = A007052(n).
T(n,n+2) = A094821(n+1).
T(n,n+3) = T(n,n+4) = A094806(n).
Sum_{k=0..n} T(n-k,k) = A217730(n). - Philippe Deléham, Mar 22 2013

A332204 a(n) is the real part of f(n) defined by f(0) = 0, and f(n+1) = f(n) + g((1+i)^(A065359(n) mod 8)) (where g(z) = z/gcd(Re(z), Im(z)) and i denotes the imaginary unit).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 15, 16, 17, 17, 16, 17, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 32, 31, 31, 32, 33, 33, 34, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 49, 50
Offset: 0

Views

Author

Rémy Sigrist, Feb 07 2020

Keywords

Comments

The representation of {f(n)} resembles a Koch curve (see illustrations in Links section).
The sequence A065359 mod 8 gives the direction at each step as follows:
3 2 1
\ | /
\ | /
\|/
4 ------.------ 0
5 6 7
We can also build {f(n)} with A096268 as follows:
- start at the origin looking to the right,
- for k=0, 1, ...:
- move forward to the next lattice point
(this point is at distance 1 or sqrt(2)),
- if A096268(k)=0
then turn 45 degrees to the left
otherwise turn 90 degrees to the right,
- this connects the first differences of A065359 and A096268.

Examples

			The first terms, alongside f(n) and A065359(n), are:
  n   a(n)  f(n)   A065359(n)
  --  ----  -----  ----------
   0     0      0           0
   1     1      1           1
   2     2    2+i          -1
   3     3      3           0
   4     4      4           1
   5     5    5+i           2
   6     5  5+2*i           0
   7     6  6+2*i           1
   8     7  7+3*i          -1
   9     8  8+2*i           0
  10     9  9+2*i          -2
  11     9    9+i          -1
  12    10     10           0
  13    11     11           1
  14    12   12+i          -1
  15    13     13           0
  16    14     14           1
		

Crossrefs

Cf. A065359, A096268, A217730, A332205 (imaginary part), A332206 (where f is real).

Programs

  • Mathematica
    A065359[0] = 0;
    A065359[n_] := -Total[(-1)^PositionIndex[Reverse[IntegerDigits[n, 2]]][1]];
    g[z_] := z/GCD[Re[z], Im[z]];
    Module[{n = 0}, Re[NestList[# + g[(1+I)^A065359[n++]] &, 0, 100]]] (* Paolo Xausa, Aug 28 2024 *)
  • PARI
    \\ See Links section.

Formula

a(2^k) = A217730(k) for any k >= 0.
a(4^k+m) + a(m) = A217730(2*k) for any k >= 0 and m = 0..4^k.
Showing 1-2 of 2 results.