A062138 Coefficient triangle of generalized Laguerre polynomials n!*L(n,5,x)(rising powers of x).
1, 6, -1, 42, -14, 1, 336, -168, 24, -1, 3024, -2016, 432, -36, 1, 30240, -25200, 7200, -900, 50, -1, 332640, -332640, 118800, -19800, 1650, -66, 1, 3991680, -4656960, 1995840, -415800, 46200, -2772, 84, -1, 51891840, -69189120
Offset: 0
Examples
Triangle begins: {1}; {6, -1}; {42, -14, 1}; {336, -168, 24, -1}; ... 2!*L(2, 5, x) = 42-14*x+x^2.
References
- A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
Links
Crossrefs
Programs
-
Mathematica
Flatten[Table[((-1)^m)*n!*Binomial[n+5,n-m]/m!,{n,0,8},{m,0,n}]] (* Indranil Ghosh, Feb 24 2017 *)
-
PARI
tabl(nn) = {for (n=0, nn, for (m=0, n, print1(((-1)^m)*n!*binomial(n+5, n-m)/m!, ", "); ); print(); ); } \\ Indranil Ghosh, Feb 24 2017
-
PARI
row(n) = Vecrev(n!*pollaguerre(n, 5)); \\ Michel Marcus, Feb 06 2021
-
Python
import math f=math.factorial def C(n, r):return f(n)//f(r)//f(n-r) i=-1 for n in range(26): for m in range(n+1): i += 1 print(str(i)+" "+str(((-1)**m)*f(n)*C(n+5, n-m)//f(m))) # Indranil Ghosh, Feb 24 2017
Formula
T(n, m) = ((-1)^m)*n!*binomial(n+5, n-m)/m!.
E.g.f. for m-th column: ((-x/(1-x))^m)/(m!*(1-x)^6), m >= 0.
Comments