A062204 Number of alignments of n strings of length 7.
1, 1, 48639, 75494983297, 1177359342144641535, 103746115308050354021387521, 36585008462723983824862891403150079, 41020870889694863957061607086939138327565057, 124069835911824710311393852646151897334844371419287295
Offset: 0
Keywords
Examples
A(2, 7) = 48639 since this represents the number of distinct alignments of 2 strings of length 7. All values in A(2,X) can be cross-validated against the Delannoy sequence D(X,X) A001850.
References
- M. S. Waterman, Introduction to Computational Biology: Maps, Sequences and Genomes, 1995.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- M. A. Covington, The number of distinct alignments of two strings, Journal of Quantitative Linguistics, Volume 11, no. 3 (2004), 173-182.
- Michael S. Waterman, Home Page (contains copies of his papers)
Crossrefs
Programs
-
Mathematica
With[{r = 7}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 10}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
Formula
A(n, y) = sum(k=0,n*y, sum(t=0,k, (-1)^t * binomial(k,t) * binomial(k-t,y)^n )).
a(n) ~ sqrt(7*Pi) * (7^6/6!)^n * n^(7*n+1/2) / (2^(7/2) * exp(7*n) * (log(2))^(7*n+1)). - Vaclav Kotesovec, Mar 23 2016
Extensions
Formula and sequence revised by Max Alekseyev, Mar 12 2009
Comments