cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Angelo Dalli

Angelo Dalli's wiki page.

Angelo Dalli has authored 3 sequences.

A062204 Number of alignments of n strings of length 7.

Original entry on oeis.org

1, 1, 48639, 75494983297, 1177359342144641535, 103746115308050354021387521, 36585008462723983824862891403150079, 41020870889694863957061607086939138327565057, 124069835911824710311393852646151897334844371419287295
Offset: 0

Author

Angelo Dalli, Jun 13 2001

Keywords

Comments

Strings of length 7 represent the average word length for most natural languages such as English. This sequence represents the search space for alignment and sequencing algorithms that work on multiple sets of strings.
The assertion that "strings of length 7 represent the average word length for most natural languages such as English" seems to conflict with studies that show that the average word length in English is about 4.5 letters and the average word length in modern Russian is 5.28 letters. - M. F. Hasler, Mar 12 2009
In general, row r > 0 of A262809 is asymptotic to sqrt(r*Pi) * (r^(r-1)/(r-1)!)^n * n^(r*n+1/2) / (2^(r/2) * exp(r*n) * (log(2))^(r*n+1)). - Vaclav Kotesovec, Mar 23 2016

Examples

			A(2, 7) = 48639 since this represents the number of distinct alignments of 2 strings of length 7. All values in A(2,X) can be cross-validated against the Delannoy sequence D(X,X) A001850.
		

References

  • M. S. Waterman, Introduction to Computational Biology: Maps, Sequences and Genomes, 1995.

Crossrefs

Cf. A062205, A062208, A001850. A(2, X) represents Waterman's f function.
Row n=7 of A262809.

Programs

  • Mathematica
    With[{r = 7}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 10}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

A(n, y) = sum(k=0,n*y, sum(t=0,k, (-1)^t * binomial(k,t) * binomial(k-t,y)^n )).
a(n) ~ sqrt(7*Pi) * (7^6/6!)^n * n^(7*n+1/2) / (2^(7/2) * exp(7*n) * (log(2))^(7*n+1)). - Vaclav Kotesovec, Mar 23 2016

Extensions

Formula and sequence revised by Max Alekseyev, Mar 12 2009

A062208 a(n) = Sum_{m>=0} binomial(m,3)^n*2^(-m-1).

Original entry on oeis.org

1, 1, 63, 16081, 10681263, 14638956721, 35941784497263, 143743469278461361, 874531783382503604463, 7687300579969605991710001, 93777824804632275267836362863, 1537173608464960118370398000894641, 32970915649974341628739088902163732463
Offset: 0

Author

Angelo Dalli, Jun 13 2001

Keywords

Comments

Number of alignments of n strings of length 3.
Conjectures: a(2*n) = 3 (mod 60) and a(2*n+1) = 1 (mod 60); for fixed k, the sequence a(n) (mod k) eventually becomes periodic with exact period a divisor of phi(k), where phi(k) is Euler's totient function A000010. - Peter Bala, Feb 04 2018

Crossrefs

See A062204 for further references, formulas and comments.
Row n=3 of A262809.

Programs

  • Maple
    A000629 := proc(n) local k ; sum( k^n/2^k,k=0..infinity) ; end: A062208 := proc(n) local a,stir,ni,n1,n2,n3,stir2,i,j,tmp ; a := 0 ; if n = 0 then RETURN(1) ; fi ; stir := combinat[partition](n) ; stir2 := {} ; for i in stir do if nops(i) <= 3 then tmp := i ; while nops(tmp) < 3 do tmp := [op(tmp),0] ; od: tmp := combinat[permute](tmp) ; for j in tmp do stir2 := stir2 union { j } ; od: fi ; od: for ni in stir2 do n1 := op(1,ni) ; n2 := op(2,ni) ; n3 := op(3,ni) ; a := a+combinat[multinomial](n,n1,n2,n3)*(A000629(3*n1+2*n2+n3)-1/2-2^(3*n1+2*n2+n3)/4)*(-3)^n2*2^n3 ; od: a/(2*6^n) ; end: seq(A062208(n),n=0..14) ; # R. J. Mathar, Apr 01 2008
    a:=proc(n) options operator, arrow: sum(binomial(m, 3)^n*2^(-m-1),m=0.. infinity) end proc: seq(a(n),n=0..12); # Emeric Deutsch, Mar 22 2008
  • Mathematica
    a[n_] = Sum[2^(-1-m)*((m-2)*(m-1)*m)^n, {m, 0, Infinity}]/6^n; a /@ Range[0, 12] (* Jean-François Alcover, Jul 13 2011 *)
    With[{r = 3}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

From Vaclav Kotesovec, Mar 22 2016: (Start)
a(n) ~ 3^(2*n + 1/2) * n!^3 / (Pi * n * 2^(n+3) * (log(2))^(3*n+1)).
a(n) ~ sqrt(Pi)*3^(2*n+1/2)*n^(3*n+1/2) / (2^(n+3/2)*exp(3*n)*(log(2))^(3*n+1)).
(End)
a(n) = Sum_{k = 3..3*n} Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)* binomial(i,3)^n. Row sums of A299041. - Peter Bala, Feb 04 2018

Extensions

New definition from Vladeta Jovovic, Mar 01 2008
Edited by N. J. A. Sloane, Sep 19 2009 at the suggestion of Max Alekseyev

A062205 Number of alignments of n strings of length 4.

Original entry on oeis.org

1, 1, 321, 699121, 5552351121, 117029959485121, 5402040231378569121, 480086443888959812703121, 74896283763383392805211587121, 19133358944433370977791260580721121, 7581761490297442738124283591348762605121, 4461925444770180839552702516305804230194739121
Offset: 0

Author

Angelo Dalli, Jun 13 2001

Keywords

Comments

Conjectures: a(n) == 1 (mod 80); for fixed k, the sequence a(n) (mod k) eventually becomes periodic. - Peter Bala, Dec 19 2019

Crossrefs

See A062204 for references, formulas and comments.
Row n=4 of A262809.

Programs

  • Mathematica
    With[{r = 4}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

From Vaclav Kotesovec, Mar 22 2016: (Start)
a(n) ~ 2^(5*n-3) * n!^4 / (Pi^(3/2) * n^(3/2) * 3^n * (log(2))^(4*n+1)).
a(n) ~ sqrt(Pi) * 2^(5*n-1) * n^(4*n+1/2) / (3^n * exp(4*n) * (log(2))^(4*n+1)).
(End)
It appears that a(n) = (1/(2*6^n))*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k) *A055203(n+k) for n >= 1. - Peter Bala, Dec 19 2019

Extensions

Revised by Max Alekseyev, Mar 13 2009