cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A136245 a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A062208(k).

Original entry on oeis.org

1, 1, 31, 2649, 441061, 121105865, 49615422851, 28371278927921, 21590240845164949, 21097596332115411641, 25747535208630845100139, 38380480386387824213385401, 68621153798435104081277748401
Offset: 0

Views

Author

Vladeta Jovovic, Mar 16 2008

Keywords

Crossrefs

Cf. A121251.

Formula

a(n) = Sum_{m>=0} binomial(binomial(m,3),n)/2^(m+1).

Extensions

More terms from Alois P. Heinz, Aug 13 2008

A136246 a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n-k)*Stirling1(n,k)*A062208(k).

Original entry on oeis.org

1, 1, 32, 2712, 449102, 122886128, 50225389432, 28670796914144, 21789885975738524, 21271115441652577064, 25938193213744579451420, 38638907727108476424404864, 69044758685363149615280762608, 145768622491129079115419544343808, 358961215083489204505055286181798208
Offset: 0

Views

Author

Vladeta Jovovic, Mar 16 2008

Keywords

Crossrefs

Row n=3 of A330942.

Programs

  • Maple
    A000629 := proc(n) local k ; sum( k^n/2^k,k=0..infinity) ; end: A062208 := proc(n) option remember ; local a,stir,ni,n1,n2,n3,stir2,i,j,tmp ; a := 0 ; if n = 0 then RETURN(1) ; fi ; stir := combinat[partition](n) ; stir2 := {} ; for i in stir do if nops(i) <= 3 then tmp := i ; while nops(tmp) < 3 do tmp := [op(tmp),0] ; od: tmp := combinat[permute](tmp) ; for j in tmp do stir2 := stir2 union { j } ; od: fi ; od: for ni in stir2 do n1 := op(1,ni) ; n2 := op(2,ni) ; n3 := op(3,ni) ; a := a+combinat[multinomial](n,n1,n2,n3)*(A000629(3*n1+2*n2+n3)-1/2-2^(3*n1+2*n2+n3)/4)*(-3)^n2*2^n3 ; od: a/(2*6^n) ; end: A136246 := proc(n) local k ; add((-1)^(n-k)*combinat[stirling1](n,k)*A062208(k),k=0..n)/n! ; end: seq(A136246(n),n=0..14) ; # R. J. Mathar, Apr 01 2008
  • Mathematica
    a[n_] := Sum[Binomial[Binomial[j, 3] + n - 1, n] * Sum[(-1)^(i - j)* Binomial[i, j], {i, j, 3n}], {j, 0, 3n}];
    a /@ Range[0, 14] (* Jean-François Alcover, Feb 13 2020, after Andrew Howroyd *)
  • PARI
    a(n) = {sum(j=0, 3*n, binomial(binomial(j,3)+n-1, n) * sum(i=j, 3*n, (-1)^(i-j)*binomial(i,j)))} \\ Andrew Howroyd, Feb 09 2020

Formula

a(n) = Sum_{m>=0} binomial(binomial(m,3)+n-1,n)/2^(m+1).
a(n) = Sum_{j=0..3*n} binomial(binomial(j,3)+n-1, n) * (Sum_{i=j..3*n} (-1)^(i-j)*binomial(i,j)). - Andrew Howroyd, Feb 09 2020

Extensions

More terms from R. J. Mathar, Apr 01 2008
Terms a(13) and beyond from Andrew Howroyd, Feb 09 2020

A262809 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 13, 1, 1, 1, 75, 409, 63, 1, 1, 1, 541, 23917, 16081, 321, 1, 1, 1, 4683, 2244361, 10681263, 699121, 1683, 1, 1, 1, 47293, 308682013, 14638956721, 5552351121, 32193253, 8989, 1, 1, 1, 545835, 58514835289, 35941784497263, 117029959485121, 3147728203035, 1538743249, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2015

Keywords

Comments

Also, A(n,k) is the number of alignments for k sequences of length n each (Slowinski 1998).
Row r > 0 is asymptotic to sqrt(r*Pi) * (r^(r-1)/(r-1)!)^n * n^(r*n+1/2) / (2^(r/2) * exp(r*n) * (log(2))^(r*n+1)), or equivalently to sqrt(r) * (r^(r-1)/(r-1)!)^n * (n!)^r / (2^r * (Pi*n)^((r-1)/2) * (log(2))^(r*n+1)). - Vaclav Kotesovec, Mar 23 2016
From Vaclav Kotesovec, Mar 23 2016: (Start)
Column k > 0 is asymptotic to sqrt(c(k)) * d(k)^n / (Pi*n)^((k-1)/2), where c(k) and d(k) are roots of polynomial equations of degree k, independent on n.
---------------------------------------------------
k d(k)
---------------------------------------------------
2 5.8284271247461900976033774484193...
3 56.9476283720414911685286267804411...
4 780.2794068067951456595241495989622...
5 13755.2719024115081712083954421541320...
6 296476.9162644200814909862281498491264...
7 7553550.6198338218721069097516499501996...
8 222082591.6017202421029000117685530884167...
9 7400694480.0494436216324852038000444393262...
10 275651917450.6709238286995776605620357737005...
---------------------------------------------------
d(k) is a root of polynomial:
---------------------------------------------------
k=2, 1 - 6*d + d^2
k=3, -1 + 3*d - 57*d^2 + d^3
k=4, 1 - 12*d - 218*d^2 - 780*d^3 + d^4
k=5, -1 + 5*d - 1260*d^2 - 3740*d^3 - 13755*d^4 + d^5
k=6, 1 - 18*d - 5397*d^2 - 123696*d^3 + 321303*d^4 - 296478*d^5 + d^6
k=7, -1 + 7*d - 24031*d^2 - 374521*d^3 - 24850385*d^4 + 17978709*d^5 - 7553553*d^6 + d^7
k=8, 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8
(End)
d(k) = (2^(1/k) - 1)^(-k). - David Bevan, Apr 07 2022
d(k) is asymptotic to (k/log(2))^k/sqrt(2). - David Bevan, Apr 07 2022
A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column. - Andrew Howroyd, Jan 23 2020

Examples

			A(2,2) = 13: [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,1),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)].
Square array A(n,k) begins:
  1, 1,    1,        1,             1,                   1, ...
  1, 1,    3,       13,            75,                 541, ...
  1, 1,   13,      409,         23917,             2244361, ...
  1, 1,   63,    16081,      10681263,         14638956721, ...
  1, 1,  321,   699121,    5552351121,     117029959485121, ...
  1, 1, 1683, 32193253, 3147728203035, 1050740615666453461, ...
		

Crossrefs

Columns: A000012 (k=0 and k=1), A001850 (k=2), A126086 (k=3), A263064 (k=4), A263065 (k=5), A263066 (k=6), A263067 (k=7), A263068 (k=8), A263069 (k=9), A263070 (k=10).
Rows: A000012 (n=0), A000670 (n=1), A055203 (n=2), A062208 (n=3), A062205 (n=4), A263061 (n=5), A263062 (n=6), A062204 (n=7), A263063 (n=8), A263071 (n=9), A263072 (n=10).
Main diagonal: A262810.

Programs

  • Maple
    A:= (n, k)-> add(add((-1)^i*binomial(j, i)*
         binomial(j-i, n)^k, i=0..j), j=0..k*n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[, 0] =  1; A[n, k_] := Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 22 2016, after Alois P. Heinz *)
  • PARI
    T(n,k) = {my(m=n*k); sum(j=0, m, binomial(j,n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020

Formula

A(n,k) = Sum_{j=0..k*n} Sum_{i=0..j} (-1)^i*C(j,i)*C(j-i,n)^k.
A(n,k) = Sum_{i >= 0} binomial(i,n)^k/2^(i+1). - Peter Bala, Jan 30 2018
A(n,k) = Sum_{j=0..n*k} binomial(j,n)^k * Sum_{i=j..n*k} (-1)^(i-j) * binomial(i,j). - Andrew Howroyd, Jan 23 2020

A055203 Number of different relations between n intervals on a line.

Original entry on oeis.org

1, 1, 13, 409, 23917, 2244361, 308682013, 58514835289, 14623910308237, 4659168491711401, 1843200116875263613, 886470355671907534969, 509366445167037318008557, 344630301458257894126724041, 271188703889907190388528763613, 245570692377888837925941696215449
Offset: 0

Views

Author

Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Jun 22 2000

Keywords

Comments

From Peter Bala, Jan 30 2018: (Start)
Number of alignments of n strings of length 2 (see Slowinski).
Conjectures: a(n) == 1 (mod 12); for fixed k, the sequence a(n) (mod k) eventually becomes periodic with exact period a divisor of phi(k), where phi(k) is Euler's totient function A000010. (End)

Examples

			In case n = 2 this is the Delannoy number a(2) = D(2,2) = 13.
a(2) = 13 because if you have two intervals [a1,a2] and [b1,b2], using a for a1 or a2 and b for b1 or b2 and writing c if an a is at the same place as a b, we get the following possibilities: aabb, acb, abab, cab, abc, baab, abba, cc, bac, cba, baba, bca, bbaa.
		

References

  • S. R. Schwer, Dépendances temporelles: les mots pour le dire, Journées Intelligence Artificielle, 1998.
  • S. R. Schwer, Enumerating and generating Allen's algebra, in preparation.

Crossrefs

Programs

  • Maple
    lambda := proc(p,n) option remember; if n = 1 then if p = 2 then RETURN(1) else RETURN(0) fi; else RETURN((p*(p-1)/2)*(lambda(p,n-1)+2*lambda(p-1,n-1)+lambda(p-2,n-1))) fi; end; A055203 := n->add(lambda(i,n),i=2..2*n);
    A055203 := proc(n) local k; add(A078739(n,k)*k!,k=0..2*n)/2^n end:
    seq(A055203(n),n=0..15); # Peter Luschny, Mar 25 2011
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> ceil(add(b(n+k)*binomial(n, k), k=0..n)/2^(n+1)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 10 2018
  • Mathematica
    a[n_] := Sum[((m-1)*m)^n / 2^(m+n+1), {m, 0, Infinity}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 10 2011, after Vladeta Jovovic *)
    With[{r = 2}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) = Sum_{i=2..2n} lambda(i, n), with lambda(p, 1) = 1 if p = 2, otherwise 0; lambda(p, n) = (p*(p-1)/2)*(lambda(p, n-1) + 2*lambda(p-1, n-1) + lambda(p-2, n-1)).
lambda(p, n) = Sum_k[( - 1)^(p + k) * C(p, k) * ((k - 1)*k/2)^n]. So if T(m, 0), T(m, 1), ..., T(m, m) is any row of A035317 with m >= 2n - 1 then a(n) = Sum_j[(-1)^j * T(m, j) * ((m - j + 1)*(m - j)/2)^n]; e.g., a(2) = 13 = 1*6^2 - 3*3^2 + 4*1^2 - 2*0^2 = 1*10^2 - 4*6^2 + 7*3^2 - 6*1^2 + 3*0^2 = 1*15^2 - 5*10^2 + 11*6^2 - 13*3^2 + 9*1^2 - 3*0^2 etc. while a(3) = 409 = 1*15^3 - 5*10^3 + 11*6^3 - 13*3^3 + 9*1^3 - 3*0^3 etc. - Henry Bottomley, Jan 03 2001
Row sums of A122193. - Vladeta Jovovic, Aug 24 2006
a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*A121251(k). - Vladeta Jovovic, Aug 25 2006
E.g.f.: Sum_{m>=0} exp(x*binomial(m,2))/2^(m+1). - Vladeta Jovovic, Sep 24 2006
a(n) = Sum_{m>=0} binomial(m,2)^n/2^(m+1). - Vladeta Jovovic, Aug 17 2006
a(n) = (1/2^n)*Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A000670(n+k). - Vladeta Jovovic, Aug 17 2006
a(n) ~ n! * n^n * 2^(n-1) / (exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Mar 15 2014
From Peter Bala, Jan 30 2018: (Start)
a(n) = Sum_{k = 2..2*n} Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i*(i-1)/2)^n.
a(n) = (1/2^(n+1))*Sum_{k = 0..n} binomial(n,k)*A000670(n+k) for n >= 1. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 04 2000
More terms from N. J. A. Sloane, Jan 03 2001

A299041 Irregular table: T(n,k) equals the number of alignments of length k of n strings each of length 3.

Original entry on oeis.org

1, 1, 12, 30, 20, 1, 60, 690, 2940, 5670, 5040, 1680, 1, 252, 8730, 103820, 581700, 1767360, 3087000, 3099600, 1663200, 369600, 1, 1020, 94890, 2615340, 32186070, 214628400, 859992000, 2189325600, 3628409400, 3903900000, 2630628000, 1009008000, 168168000, 1, 4092, 979530, 58061420, 1411122300
Offset: 1

Views

Author

Peter Bala, Feb 02 2018

Keywords

Comments

An alignment of n strings of various lengths is a way of inserting blank characters into the n strings so that the resulting strings all have the same length. We don't allow insertion of a blank character into the same position in each of the n strings.
In this case, let s_1,...,s_n be n strings each of length 3 over an alphabet A. Let - be a gap symbol not in A and let A' = union of A and {-}. An alignment of the n strings is an n-tuple (s_1',...,s_n') of strings each of length >= 3 over the alphabet A' such that
(a) the strings s_i', 1 <= i <= n, have the same length. This common length is called the length of the alignment.
(b) deleting the gap symbols from s_i' yields the string s_i for 1 <= i <= n
(c) there is no value j such that all the strings s_i', 1 <= i <= n have a gap symbol at position j.
By writing the strings s_i' one under another we can consider an alignment of n strings as an n X L matrix, where L, the length of the alignment, ranges from a minimum value of 3 to a maximum value of 3*n. Each row of the matrix has 3 characters from the alphabet A and (L - 3) gap characters.
For example,
s_1' = ABC------
s_2' = ---DEF---
s_3' = ------GHI
is an alignment (of maximum length L = 9) of three strings s_1 = ABC, s_2 = DEF and s_3 = GHI each of length 3.
For the number of alignments of length k of n strings of length 1 (resp. 2) see A131689 (resp. A122193).

Examples

			Table begins
n\k| 3   4     5       6      7      8        9      10
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
  1| 1
  2| 1  12    30      20
  3| 1  60   690    2940   5670    5040    1680
  4| 1 252  8730  103820 581700 1767360 3087000 3099600 ...
...
T(2,5) = 30: An alignment of length 5 will have two gap symbols on each line. There are C(5,2) = 10 ways of choosing the 2 positions to insert the gap symbols in the first string. The second string in the alignment must then have nongap symbols at these two positions leaving three positions in which to insert the remaining 1 nongap symbol, giving in total 10 x 3 = 30 possible alignments of 2 strings of 3 characters. Some examples are
  ABC--   ABC--   ABC--
  D--EF   -D-EF   --DEF
Row 2: Sum_{i = 3..n-1} C(i,3)^2 = C(n,4) + 12*C(n,5) + 30*C(n,6) + 20*C(n,7).
Row 3: Sum_{i = 3..n-1} C(i,3)^3 = C(n,4) + 60*C(n,5) + 690*C(n,6) + 2940*C(n,7) + 5670*C(n,8)+ 5040*C(n,9)+ 1680*C(n,10).
exp( Sum_{n >= 1} R(n,2)*x^n/n ) = (1 + x + 153*x^2 + 128793*x^3 + 319155321*x^4 + 1744213657689*x^5 + ....)^8
exp( Sum_{n >= 1} R(n,3)*x^n/n ) = (1 + x + 424*x^2 + 998584*x^3 + 6925040260*x^4 + 105920615923684*x^5 + ....)^27.
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i) *binomial(k,i)*binomial(i,3)^n, i = 0..k ), k = 3..3*n), n = 1..6);
  • Mathematica
    nmax = 6; T[n_, k_] := Sum[(-1)^(k-i) Binomial[k, i] Binomial[i, 3]^n, {i, 0, k}]; Table[T[n, k], {n, 1, nmax}, {k, 3, 3n}] // Flatten (* Jean-François Alcover, Feb 20 2018 *)

Formula

T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*binomial(i,3)^n.
T(n,3) = 1; T(n,3*n) = (3*n)!/6^n = A014606(n)
T(n,k) = binomial(k,3)*( T(n-1,k) + 3*T(n-1,k-1) + 3*T(n-1,k-2) + T(n-1,k-3) ) for 3 <= k <= 3*n with boundary conditions T(n,3) = 1 for n >= 1 and T(n,k) = 0 if (k < 3) or (k > 3*n).
Double e.g.f.: exp(-x)*Sum_{n >= 0} exp(binomial(n,3)*y)*x^n/n! = 1 + (x^3/3!)*y + (x^3/3! + 12*x^4/4! + 30*x^5/5! + 20*x^6/6!)*y^2/2! + ....
n-th row polynomial R(n,x) = Sum_{i >= 3} binomial(i,3)^n*x^i/(1 + x)^(i+1) for n >= 1.
1/(1 - x)*R(n,x/(1 - x)) = Sum_{i >= 3} binomial(i,3)^n*x^i for n >= 1.
R(n,x) = x^3 o x^3 o ... o x^3 (n factors), where o is the black diamond product of power series defined in Dukes and White.
R(n,x) = coefficient of (z_1)^3*...*(z_n)^3 in the expansion of the rational function 1/(1 + x - x*(1 + z_1)*...*(1 + z_n)).
The polynomials Sum_{k = 3..3*n} T(n,k)*x^(k-3)*(1 - x)^(3*n-k) are the row polynomials of A174266.
Sum_{i = 3..n-1} binomial(i,3)^m = Sum_{k = 3..3*m} T(m,k)*binomial(n,k+1) for m >= 1. See Examples below.
x^3*R(n,-1 - x) = (-1)^n*(1 + x)^3*R(n,x).
R(n+1,x) = 1/3!*x^3*(d/dx)^3 ((1 + x)^3*R(n,x)) for n >= 1.
The zeros of R(n,x) belong to the interval [-1, 0].
Row sums R(n,1) = A062208(n); alternating row sums R(n,-1) = (-1)^n.
For k a nonzero integer, the power series A(k,x) := exp( Sum_{n >= 1} 1/k^3*R(n,k)*x^n/n ) appear to have integer coefficients. See the Example section.
Sum_{k = 3..3*n} T(n,k)*binomial(x,k) = ( binomial(x,3) )^n. Equivalently, Sum_{k = 3..3*n} (-1)^(n+k)*T(n,k)*binomial(x+k,k) = ( binomial(x+3,3) )^n. Cf. the Worpitzky-type identity Sum_{k = 1..n} A019538(n,k)* binomial(x,k) = x^n.
Sum_{k = 3..3*n} T(n,k)*binomial(x,k-3) = -binomial(x,3)^n + 3*binomial(x+1,3)^n - 3*binomial(x+2,3)^n + binomial(x+3,3)^n. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane.

A062204 Number of alignments of n strings of length 7.

Original entry on oeis.org

1, 1, 48639, 75494983297, 1177359342144641535, 103746115308050354021387521, 36585008462723983824862891403150079, 41020870889694863957061607086939138327565057, 124069835911824710311393852646151897334844371419287295
Offset: 0

Views

Author

Angelo Dalli, Jun 13 2001

Keywords

Comments

Strings of length 7 represent the average word length for most natural languages such as English. This sequence represents the search space for alignment and sequencing algorithms that work on multiple sets of strings.
The assertion that "strings of length 7 represent the average word length for most natural languages such as English" seems to conflict with studies that show that the average word length in English is about 4.5 letters and the average word length in modern Russian is 5.28 letters. - M. F. Hasler, Mar 12 2009
In general, row r > 0 of A262809 is asymptotic to sqrt(r*Pi) * (r^(r-1)/(r-1)!)^n * n^(r*n+1/2) / (2^(r/2) * exp(r*n) * (log(2))^(r*n+1)). - Vaclav Kotesovec, Mar 23 2016

Examples

			A(2, 7) = 48639 since this represents the number of distinct alignments of 2 strings of length 7. All values in A(2,X) can be cross-validated against the Delannoy sequence D(X,X) A001850.
		

References

  • M. S. Waterman, Introduction to Computational Biology: Maps, Sequences and Genomes, 1995.

Crossrefs

Cf. A062205, A062208, A001850. A(2, X) represents Waterman's f function.
Row n=7 of A262809.

Programs

  • Mathematica
    With[{r = 7}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 10}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

A(n, y) = sum(k=0,n*y, sum(t=0,k, (-1)^t * binomial(k,t) * binomial(k-t,y)^n )).
a(n) ~ sqrt(7*Pi) * (7^6/6!)^n * n^(7*n+1/2) / (2^(7/2) * exp(7*n) * (log(2))^(7*n+1)). - Vaclav Kotesovec, Mar 23 2016

Extensions

Formula and sequence revised by Max Alekseyev, Mar 12 2009

A384352 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/2)^(k+3)).

Original entry on oeis.org

1, 1, 32, 5392, 2676188, 2930633692, 5993325199448, 20540879727692152, 109337218761743017718, 854254522610491562826582, 9378640254148405369808277352, 139752461092050444767050922501096, 2747716352285121538660626991038190636, 69628008338488529846443753577404293410060
Offset: 0

Views

Author

Seiichi Manyama, May 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a262809(n, k) = sum(i=0, k*n, sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a262809(3, k)*x^k/k)))

Formula

G.f.: exp(Sum_{k>=1} A062208(k) * x^k/k).
Showing 1-7 of 7 results.