cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A000670 Fubini numbers: number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements; or number of ordered partitions of [n].

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632573, 28091567595, 526858348381, 10641342970443, 230283190977853, 5315654681981355, 130370767029135901, 3385534663256845323, 92801587319328411133, 2677687796244384203115, 81124824998504073881821
Offset: 0

Views

Author

Keywords

Comments

Number of ways n competitors can rank in a competition, allowing for the possibility of ties.
Also number of asymmetric generalized weak orders on n points.
Also called the ordered Bell numbers.
A weak order is a relation that is transitive and complete.
Called Fubini numbers by Comtet: counts formulas in Fubini theorem when switching the order of summation in multiple sums. - Olivier Gérard, Sep 30 2002 [Named after the Italian mathematician Guido Fubini (1879-1943). - Amiram Eldar, Jun 17 2021]
If the points are unlabeled then the answer is a(0) = 1, a(n) = 2^(n-1) (cf. A011782).
For n>0, a(n) is the number of elements in the Coxeter complex of type A_{n-1}. The corresponding sequence for type B is A080253 and there one can find a worked example as well as a geometric interpretation. - Tim Honeywill and Paul Boddington, Feb 10 2003
Also number of labeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Also the number of chains of subsets starting with the empty set and ending with a set of n distinct objects. - Andrew Niedermaier, Feb 20 2004
From Michael Somos, Mar 04 2004: (Start)
Stirling transform of A007680(n) = [3,10,42,216,...] gives [3,13,75,541,...].
Stirling transform of a(n) = [1,3,13,75,...] is A083355(n) = [1,4,23,175,...].
Stirling transform of A000142(n) = [1,2,6,24,120,...] is a(n) = [1,3,13,75,...].
Stirling transform of A005359(n-1) = [1,0,2,0,24,0,...] is a(n-1) = [1,1,3,13,75,...].
Stirling transform of A005212(n-1) = [0,1,0,6,0,120,0,...] is a(n-1) = [0,1,3,13,75,...].
(End)
Unreduced denominators in convergent to log(2) = lim_{n->infinity} n*a(n-1)/a(n).
a(n) is congruent to a(n+(p-1)p^(h-1)) (mod p^h) for n >= h (see Barsky).
Stirling-Bernoulli transform of 1/(1-x^2). - Paul Barry, Apr 20 2005
This is the sequence of moments of the probability distribution of the number of tails before the first head in a sequence of fair coin tosses. The sequence of cumulants of the same probability distribution is A000629. That sequence is twice the result of deletion of the first term of this sequence. - Michael Hardy (hardy(AT)math.umn.edu), May 01 2005
With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j,i) = the j-th part of the i-th partition of n, m(i,j) = multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i=1..p(n)} (n!/(Product_{j=1..p(i)} p(i,j)!)) * (p(i)!/(Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of chains among subsets of [n]. The summed term in the new formula is the number of such chains of length k. - Micha Hofri (hofri(AT)wpi.edu), Jul 01 2006
Occurs also as first column of a matrix-inversion occurring in a sum-of-like-powers problem. Consider the problem for any fixed natural number m>2 of finding solutions to the equation Sum_{k=1..n} k^m = (k+1)^m. Erdős conjectured that there are no solutions for n, m > 2. Let D be the matrix of differences of D[m,n] := Sum_{k=1..n} k^m - (k+1)^m. Then the generating functions for the rows of this matrix D constitute a set of polynomials in n (for varying n along columns) and the m-th polynomial defining the m-th row. Let GF_D be the matrix of the coefficients of this set of polynomials. Then the present sequence is the (unsigned) first column of GF_D^-1. - Gottfried Helms, Apr 01 2007
Assuming A = log(2), D is d/dx and f(x) = x/(exp(x)-1), we have a(n) = (n!/2*A^(n+1)) Sum_{k=0..n} (A^k/k!) D^n f(-A) which gives Wilf's asymptotic value when n tends to infinity. Equivalently, D^n f(-a) = 2*( A*a(n) - 2*a(n-1) ). - Martin Kochanski (mjk(AT)cardbox.com), May 10 2007
List partition transform (see A133314) of (1,-1,-1,-1,...). - Tom Copeland, Oct 24 2007
First column of A154921. - Mats Granvik, Jan 17 2009
A slightly more transparent interpretation of a(n) is as the number of 'factor sequences' of N for the case in which N is a product of n distinct primes. A factor sequence of N of length k is of the form 1 = x(1), x(2), ..., x(k) = N, where {x(i)} is an increasing sequence such that x(i) divides x(i+1), i=1,2,...,k-1. For example, N=70 has the 13 factor sequences {1,70}, {1,2,70}, {1,5,70}, {1,7,70}, {1,10,70}, {1,14,70}, {1,35,70}, {1,2,10,70}, {1,2,14,70}, {1,5,10,70}, {1,5,35,70}, {1,7,14,70}, {1,7,35,70}. - Martin Griffiths, Mar 25 2009
Starting (1, 3, 13, 75, ...) = row sums of triangle A163204. - Gary W. Adamson, Jul 23 2009
Equals double inverse binomial transform of A007047: (1, 3, 11, 51, ...). - Gary W. Adamson, Aug 04 2009
If f(x) = Sum_{n>=0} c(n)*x^n converges for every x, then Sum_{n>=0} f(n*x)/2^(n+1) = Sum_{n>=0} c(n)*a(n)*x^n. Example: Sum_{n>=0} exp(n*x)/2^(n+1) = Sum_{n>=0} a(n)*x^n/n! = 1/(2-exp(x)) = e.g.f. - Miklos Kristof, Nov 02 2009
Hankel transform is A091804. - Paul Barry, Mar 30 2010
It appears that the prime numbers greater than 3 in this sequence (13, 541, 47293, ...) are of the form 4n+1. - Paul Muljadi, Jan 28 2011
The Fi1 and Fi2 triangle sums of A028246 are given by the terms of this sequence. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
The modified generating function A(x) = 1/(2-exp(x))-1 = x + 3*x^2/2! + 13*x^3/3! + ... satisfies the autonomous differential equation A' = 1 + 3*A + 2*A^2 with initial condition A(0) = 0. Applying [Bergeron et al., Theorem 1] leads to two combinatorial interpretations for this sequence: (A) a(n) gives the number of plane-increasing 0-1-2 trees on n vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 2 colors. (B) a(n) gives the number of non-plane-increasing 0-1-2 trees on n vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 4 colors. Examples are given below. - Peter Bala, Aug 31 2011
Starting with offset 1 = the eigensequence of A074909 (the beheaded Pascal's triangle), and row sums of triangle A208744. - Gary W. Adamson, Mar 05 2012
a(n) = number of words of length n on the alphabet of positive integers for which the letters appearing in the word form an initial segment of the positive integers. Example: a(2) = 3 counts 11, 12, 21. The map "record position of block containing i, 1<=i<=n" is a bijection from lists of sets on [n] to these words. (The lists of sets on [2] are 12, 1/2, 2/1.) - David Callan, Jun 24 2013
This sequence was the subject of one of the earliest uses of the database. Don Knuth, who had a computer printout of the database prior to the publication of the 1973 Handbook, wrote to N. J. A. Sloane on May 18, 1970, saying: "I have just had my first real 'success' using your index of sequences, finding a sequence treated by Cayley that turns out to be identical to another (a priori quite different) sequence that came up in connection with computer sorting." A000670 is discussed in Exercise 3 of Section 5.3.1 of The Art of Computer Programming, Vol. 3, 1973. - N. J. A. Sloane, Aug 21 2014
Ramanujan gives a method of finding a continued fraction of the solution x of an equation 1 = x + a2*x^2 + ... and uses log(2) as the solution of 1 = x + x^2/2 + x^3/6 + ... as an example giving the sequence of simplified convergents as 0/1, 1/1, 2/3, 9/13, 52/75, 375/541, ... of which the sequence of denominators is this sequence, while A052882 is the numerators. - Michael Somos, Jun 19 2015
For n>=1, a(n) is the number of Dyck paths (A000108) with (i) n+1 peaks (UD's), (ii) no UUDD's, and (iii) at least one valley vertex at every nonnegative height less than the height of the path. For example, a(2)=3 counts UDUDUD (of height 1 with 2 valley vertices at height 0), UDUUDUDD, UUDUDDUD. These paths correspond, under the "glove" or "accordion" bijection, to the ordered trees counted by Cayley in the 1859 reference, after a harmless pruning of the "long branches to a leaf" in Cayley's trees. (Cayley left the reader to infer the trees he was talking about from examples for small n and perhaps from his proof.) - David Callan, Jun 23 2015
From David L. Harden, Apr 09 2017: (Start)
Fix a set X and define two distance functions d,D on X to be metrically equivalent when d(x_1,y_1) <= d(x_2,y_2) iff D(x_1,y_1) <= D(x_2,y_2) for all x_1, y_1, x_2, y_2 in X.
Now suppose that we fix a function f from unordered pairs of distinct elements of X to {1,...,n}. Then choose positive real numbers d_1 <= ... <= d_n such that d(x,y) = d_{f(x,y)}; the set of all possible choices of the d_i's makes this an n-parameter family of distance functions on X. (The simplest example of such a family occurs when n is a triangular number: When that happens, write n = (k 2). Then the set of all distance functions on X, when |X| = k, is such a family.) The number of such distance functions, up to metric equivalence, is a(n).
It is easy to see that an equivalence class of distance functions gives rise to a well-defined weak order on {d_1, ..., d_n}. To see that any weak order is realizable, choose distances from the set of integers {n-1, ..., 2n-2} so that the triangle inequality is automatically satisfied. (End)
a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 312, and 321. - Kassie Archer, Aug 30 2018
From A.H.M. Smeets, Nov 17 2018: (Start)
Also the number of semantic different assignments to n variables (x_1, ..., x_n) including simultaneous assignments. From the example given by Joerg Arndt (Mar 18 2014), this is easily seen by replacing
"{i}" by "x_i := expression_i(x_1, ..., x_n)",
"{i, j}" by "x_i, x_j := expression_i(x_1, .., x_n), expression_j(x_1, ..., x_n)", i.e., simultaneous assignment to two different variables (i <> j),
similar for simultaneous assignments to more variables, and
"<" by ";", i.e., the sequential constructor. These examples are directly related to "Number of ways n competitors can rank in a competition, allowing for the possibility of ties." in the first comment.
From this also the number of different mean definitions as obtained by iteration of n different mean functions on n initial values. Examples:
the AGM(x1,x2) = AGM(x2,x1) is represented by {arithmetic mean, geometric mean}, i.e., simultaneous assignment in any iteration step;
Archimedes's scheme (for Pi) is represented by {geometric mean} < {harmonic mean}, i.e., sequential assignment in any iteration step;
the geometric mean of two values can also be observed by {arithmetic mean, harmonic mean};
the AGHM (as defined in A319215) is represented by {arithmetic mean, geometric mean, harmonic mean}, i.e., simultaneous assignment, but there are 12 other semantic different ways to assign the values in an AGHM scheme.
By applying power means (also called Holder means) this can be extended to any value of n. (End)
Total number of faces of all dimensions in the permutohedron of order n. For example, the permutohedron of order 3 (a hexagon) has 6 vertices + 6 edges + 1 2-face = 13 faces, and the permutohedron of order 4 (a truncated octahedron) has 24 vertices + 36 edges + 14 2-faces + 1 3-face = 75 faces. A001003 is the analogous sequence for the associahedron. - Noam Zeilberger, Dec 08 2019
Number of odd multinomial coefficients N!/(a_1!*a_2!*...*a_k!). Here each a_i is positive, and Sum_{i} a_i = N (so 2^{N-1} multinomial coefficients in all), where N is any positive integer whose binary expansion has n 1's. - Richard Stanley, Apr 05 2022 (edited Oct 19 2022)
From Peter Bala, Jul 08 2022: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 16 we obtain the sequence [1, 1, 3, 13, 11, 13, 11, 13, 11, 13, ...], with an apparent period of 2 beginning at a(4). Cf. A354242.
More generally, we conjecture that the same property holds for integer sequences having an e.g.f. of the form G(exp(x) - 1), where G(x) is an integral power series. (End)
a(n) is the number of ways to form a permutation of [n] and then choose a subset of its descent set. - Geoffrey Critzer, Apr 29 2023
This is the Akiyama-Tanigawa transform of A000079, the powers of two. - Shel Kaphan, May 02 2024

Examples

			Let the points be labeled 1,2,3,...
a(2) = 3: 1<2, 2<1, 1=2.
a(3) = 13 from the 13 arrangements: 1<2<3, 1<3<2, 2<1<3, 2<3<1, 3<1<2, 3<2<1, 1=2<3 1=3<2, 2=3<1, 1<2=3, 2<1=3, 3<1=2, 1=2=3.
Three competitors can finish in 13 ways: 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; 3,2,1; 1,1,3; 2,2,1; 1,3,1; 2,1,2; 3,1,1; 1,2,2; 1,1,1.
a(3) = 13. The 13 plane increasing 0-1-2 trees on 3 vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 2 colors, are:
........................................................
........1 (x3 colors).....1(x2 colors)....1(x2 colors)..
........|................/.\............./.\............
........2 (x3 colors)...2...3...........3...2...........
........|...............................................
........3...............................................
......====..............====............====............
.Totals 9......+..........2....+..........2....=..13....
........................................................
a(4) = 75. The 75 non-plane increasing 0-1-2 trees on 4 vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 4 colors, are:
...............................................................
.....1 (x3).....1(x4).......1(x4).....1(x4)........1(x3).......
.....|........./.\........./.\......./.\...........|...........
.....2 (x3)...2...3.(x3)..3...2(x3).4...2(x3)......2(x4).......
.....|.............\...........\.........\......../.\..........
.....3.(x3).........4...........4.........3......3...4.........
.....|.........................................................
.....4.........................................................
....====......=====........====......====.........====.........
Tots 27....+....12......+...12....+...12.......+...12...=...75.
From _Joerg Arndt_, Mar 18 2014: (Start)
The a(3) = 13 strings on the alphabet {1,2,3} containing all letters up to the maximal value appearing and the corresponding ordered set partitions are:
01:  [ 1 1 1 ]     { 1, 2, 3 }
02:  [ 1 1 2 ]     { 1, 2 } < { 3 }
03:  [ 1 2 1 ]     { 1, 3 } < { 2 }
04:  [ 2 1 1 ]     { 2, 3 } < { 1 }
05:  [ 1 2 2 ]     { 1 } < { 2, 3 }
06:  [ 2 1 2 ]     { 2 } < { 1, 3 }
07:  [ 2 2 1 ]     { 3 } < { 1, 2 }
08:  [ 1 2 3 ]     { 1 } < { 2 } < { 3 }
09:  [ 1 3 2 ]     { 1 } < { 3 } < { 2 }
00:  [ 2 1 3 ]     { 2 } < { 1 } < { 3 }
11:  [ 2 3 1 ]     { 3 } < { 1 } < { 2 }
12:  [ 3 1 2 ]     { 2 } < { 3 } < { 1 }
13:  [ 3 2 1 ]     { 3 } < { 2 } < { 1 }
(End)
		

References

  • Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.
  • Norman Biggs, E. Keith Lloyd and Robin J. Wilson, Graph Theory 1736-1936, Oxford, 1976, p. 44 (P(x)).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 183 (see R_n).
  • Kenneth S. Brown, Buildings, Springer-Verlag, 1988.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 228.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 13, pp 4, Ellipses, Paris 2008.
  • P. J. Freyd, On the size of Heyting semi-lattices, preprint, 2002.
  • Ian P. Goulden and David M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd Ed., 1994, exercise 7.44 (pp. 378, 571).
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • Donald E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, 1973, Section 5.3.1, Problem 3.
  • M. Muresan, Generalized Fubini numbers, Stud. Cerc. Mat., Vol. 37, No. 1 (1985), pp. 70-76.
  • Paul Peart, Hankel determinants via Stieltjes matrices. Proceedings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000). Congr. Numer. 144 (2000), 153-159.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 19.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Example 3.15.10, p. 146.
  • Jack van der Elsen, Black and White Transformations, Shaker Publishing, Maastricht, 2005, p. 18.

Crossrefs

See A240763 for a list of the actual preferential arrangements themselves.
A000629, this sequence, A002050, A032109, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012
Binomial transform of A052841. Inverse binomial transform of A000629.
Asymptotic to A034172.
Row r=1 of A094416. Row 0 of array in A226513. Row n=1 of A262809.
Main diagonal of: A135313, A261781, A276890, A327245, A327583, A327584.
Row sums of triangles A019538, A131689, A208744 and A276891.
A217389 and A239914 give partial sums.
Column k=1 of A326322.

Programs

  • Haskell
    a000670 n = a000670_list !! n
    a000670_list = 1 : f [1] (map tail $ tail a007318_tabl) where
       f xs (bs:bss) = y : f (y : xs) bss where y = sum $ zipWith (*) xs bs
    -- Reinhard Zumkeller, Jul 26 2014
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( 1/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
  • Maple
    A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end;
    with(combstruct); SeqSetL := [S, {S=Sequence(U), U=Set(Z,card >= 1)},labeled]; seq(count(SeqSetL,size=j),j=1..12);
    with(combinat): a:=n->add(add((-1)^(k-i)*binomial(k, i)*i^n, i=0..n), k=0..n): seq(a(n), n=0..18); # Zerinvary Lajos, Jun 03 2007
    a := n -> add(combinat:-eulerian1(n,k)*2^k,k=0..n): # Peter Luschny, Jan 02 2015
    a := n -> (polylog(-n, 1/2)+`if`(n=0,1,0))/2: seq(round(evalf(a(n),32)), n=0..20); # Peter Luschny, Nov 03 2015
    # next Maple program:
    b:= proc(n, k) option remember;
         `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Table[(PolyLog[-z, 1/2] + KroneckerDelta[z])/2, {z, 0, 20}] (* Wouter Meeussen *)
    a[0] = 1; a[n_]:= a[n]= Sum[Binomial[n, k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 13 2008 *)
    t = 30; Range[0, t]! CoefficientList[Series[1/(2 - Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (2 - Exp@x), {x, 0, n}]]; (* Michael Somos, Jun 19 2015 *)
    Table[Sum[k^n/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jun 26 2015 *)
    Table[HurwitzLerchPhi[1/2, -n, 0]/2, {n, 0, 20}] (* Jean-François Alcover, Jan 31 2016 *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*((i+r)^(n-r)/(i!*(k-i-r)!)), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; Table[Fubini[n, 1], {n, 0, 20}] (* Jean-François Alcover, Mar 31 2016 *)
    Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k] 2^k, {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jul 13 2019, after Peter Luschny *)
    Prepend[Table[-(-1)^k HurwitzLerchPhi[2, -k, 0]/2, {k, 1, 50}], 1] (* Federico Provvedi,Sep 05 2020 *)
    Table[Sum[k!*StirlingS2[n,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 22 2020 *)
  • Maxima
    makelist(sum(stirling2(n,k)*k!,k,0,n),n,0,12); /* Emanuele Munarini, Jul 07 2011 */
    
  • Maxima
    a[0]:1$ a[n]:=sum(binomial(n,k)*a[n-k],k,1,n)$ A000670(n):=a[n]$ makelist(A000670(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( subst( 1 / (1 - y), y, exp(x + x*O(x^n)) - 1), n))}; /* Michael Somos, Mar 04 2004 */
    
  • PARI
    Vec(serlaplace(1/(2-exp('x+O('x^66))))) /* Joerg Arndt, Jul 10 2011 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
    
  • PARI
    {a(n) = if( n<1, n==0, sum(k=1, n, binomial(n, k) * a(n-k)))}; /* Michael Somos, Jul 16 2017 */
    
  • Python
    from math import factorial
    from sympy.functions.combinatorial.numbers import stirling
    def A000670(n): return sum(factorial(k)*stirling(n,k) for k in range(n+1)) # Chai Wah Wu, Nov 08 2022
    
  • Sage
    @CachedFunction
    def A000670(n) : return 1 if n == 0 else add(A000670(k)*binomial(n,k) for k in range(n))
    [A000670(n) for n in (0..20)] # Peter Luschny, Jul 14 2012
    

Formula

a(n) = Sum_{k=0..n} k! * StirlingS2(n,k) (whereas the Bell numbers A000110(n) = Sum_{k=0..n} StirlingS2(n,k)).
E.g.f.: 1/(2-exp(x)).
a(n) = Sum_{k=1..n} binomial(n, k)*a(n-k), a(0) = 1.
The e.g.f. y(x) satisfies y' = 2*y^2 - y.
a(n) = A052856(n) - 1, if n>0.
a(n) = A052882(n)/n, if n>0.
a(n) = A076726(n)/2.
a(n) is asymptotic to (1/2)*n!*log_2(e)^(n+1), where log_2(e) = 1.442695... [Barthelemy80, Wilf90].
For n >= 1, a(n) = (n!/2) * Sum_{k=-infinity..infinity} of (log(2) + 2 Pi i k)^(-n-1). - Dean Hickerson
a(n) = ((x*d/dx)^n)(1/(2-x)) evaluated at x=1. - Karol A. Penson, Sep 24 2001
For n>=1, a(n) = Sum_{k>=1} (k-1)^n/2^k = A000629(n)/2. - Benoit Cloitre, Sep 08 2002
Value of the n-th Eulerian polynomial (cf. A008292) at x=2. - Vladeta Jovovic, Sep 26 2003
First Eulerian transform of the powers of 2 [A000079]. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
a(n) = Sum_{k=0..n} (-1)^k*k!*Stirling2(n+1, k+1)*(1+(-1)^k)/2. - Paul Barry, Apr 20 2005
a(n) + a(n+1) = 2*A005649(n). - Philippe Deléham, May 16 2005 - Thomas Wieder, May 18 2005
Equals inverse binomial transform of A000629. - Gary W. Adamson, May 30 2005
a(n) = Sum_{k=0..n} k!*( Stirling2(n+2, k+2) - Stirling2(n+1, k+2) ). - Micha Hofri (hofri(AT)wpi.edu), Jul 01 2006
Recurrence: 2*a(n) = (a+1)^n where superscripts are converted to subscripts after binomial expansion - reminiscent of Bernoulli numbers' B_n = (B+1)^n. - Martin Kochanski (mjk(AT)cardbox.com), May 10 2007
a(n) = (-1)^n * n! * Laguerre(n,P((.),2)), umbrally, where P(j,t) are the polynomials in A131758. - Tom Copeland, Sep 27 2007
Formula in terms of the hypergeometric function, in Maple notation: a(n) = hypergeom([2,2...2],[1,1...1],1/2)/4, n=1,2..., where in the hypergeometric function there are n upper parameters all equal to 2 and n-1 lower parameters all equal to 1 and the argument is equal to 1/2. Example: a(4) = evalf(hypergeom([2,2,2,2],[1,1,1],1/2)/4) = 75. - Karol A. Penson, Oct 04 2007
a(n) = Sum_{k=0..n} A131689(n,k). - Philippe Deléham, Nov 03 2008
From Peter Bala, Jul 01 2009: (Start)
Analogy with the Bernoulli numbers.
We enlarge upon the above comment of M. Kochanski.
The Bernoulli polynomials B_n(x), n = 0,1,..., are given by the formula
(1)... B_n(x) := Sum_{k=0..n} binomial(n,k)*B(k)*x^(n-k),
where B(n) denotes the sequence of Bernoulli numbers B(0) = 1,
B(1) = -1/2, B(2) = 1/6, B(3) = 0, ....
By analogy, we associate with the present sequence an Appell sequence of polynomials {P_n(x)} n >= 0 defined by
(2)... P_n(x) := Sum_{k=0..n} binomial(n,k)*a(k)*x^(n-k).
These polynomials have similar properties to the Bernoulli polynomials.
The first few values are P_0(x) = 1, P_1(x) = x + 1,
P_2(x) = x^2 + 2*x + 3, P_3(x) = x^3 + 3*x^2 + 9*x + 13 and
P_4(x) = x^4 + 4*x^3 + 18*x^2 + 52*x + 75. See A154921 for the triangle of coefficients of these polynomials.
The e.g.f. for this polynomial sequence is
(3)... exp(x*t)/(2 - exp(t)) = 1 + (x + 1)*t + (x^2 + 2*x + 3)*t^2/2! + ....
The polynomials satisfy the difference equation
(4)... 2*P_n(x - 1) - P_n(x) = (x - 1)^n,
and so may be used to evaluate the weighted sums of powers of integers
(1/2)*1^m + (1/2)^2*2^m + (1/2)^3*3^m + ... + (1/2)^(n-1)*(n-1)^m
via the formula
(5)... Sum_{k=1..n-1} (1/2)^k*k^m = 2*P_m(0) - (1/2)^(n-1)*P_m(n),
analogous to the evaluation of the sums 1^m + 2^m + ... + (n-1)^m in terms of Bernoulli polynomials.
This last result can be generalized to
(6)... Sum_{k=1..n-1} (1/2)^k*(k+x)^m = 2*P_m(x)-(1/2)^(n-1)*P_m(x+n).
For more properties of the polynomials P_n(x), refer to A154921.
For further information on weighted sums of powers of integers and the associated polynomial sequences, see A162312.
The present sequence also occurs in the evaluation of another sum of powers of integers. Define
(7)... S_m(n) := Sum_{k=1..n-1} (1/2)^k*((n-k)*k)^m, m = 1,2,....
Then
(8)... S_m(n) = (-1)^m *[2*Q_m(-n) - (1/2)^(n-1)*Q_m(n)],
where Q_m(x) are polynomials in x given by
(9)... Q_m(x) = Sum_{k=0..m} a(m+k)*binomial(m,k)*x^(m-k).
The first few values are Q_1(x) = x + 3, Q_2(x) = 3*x^2 + 26*x + 75
and Q_3(x) = 13*x^3 + 225*x^2 + 1623*x + 4683.
For example, m = 2 gives
(10)... S_2(n) := Sum_{k=1..n-1} (1/2)^k*((n-k)*k)^2
= 2*(3*n^2 - 26*n + 75) - (1/2)^(n-1)*(3*n^2 + 26*n + 75).
(End)
G.f.: 1/(1-x/(1-2*x/(1-2*x/(1-4*x/(1-3*x/(1-6*x/(1-4*x/(1-8*x/(1-5*x/(1-10*x/(1-6*x/(1-... (continued fraction); coefficients of continued fraction are given by floor((n+2)/2)*(3-(-1)^n)/2 (A029578(n+2)). - Paul Barry, Mar 30 2010
G.f.: 1/(1-x-2*x^2/(1-4*x-8*x^2/(1-7*x-18*x^2/(1-10*x-32*x^2/(1../(1-(3*n+1)*x-2*(n+1)^2*x^2/(1-... (continued fraction). - Paul Barry, Jun 17 2010
G.f.: A(x) = Sum_{n>=0} n!*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Jul 20 2011
a(n) = A074206(q_1*q_2*...*q_n), where {q_i} are distinct primes. - Vladimir Shevelev, Aug 05 2011
The adjusted e.g.f. A(x) := 1/(2-exp(x))-1, has inverse function A(x)^-1 = Integral_{t=0..x} 1/((1+t)*(1+2*t)). Applying [Dominici, Theorem 4.1] to invert the integral yields a formula for a(n): Let f(x) = (1+x)*(1+2*x). Let D be the operator f(x)*d/dx. Then a(n) = D^(n-1)(f(x)) evaluated at x = 0. Compare with A050351. - Peter Bala, Aug 31 2011
a(n) = D^n*(1/(1-x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A052801. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, from Oct 2011 to Oct 2013: (Start)
Continued fractions:
G.f.: 1+x/(1-x+2*x*(x-1)/(1+3*x*(2*x-1)/(1+4*x*(3*x-1)/(1+5*x*(4*x-1)/(1+... or 1+x/(U(0)-x), U(k) = 1+(k+2)*(k*x+x-1)/U(k+1).
E.g.f.: 1 + x/(G(0)-2*x) where G(k) = x + k + 1 - x*(k+1)/G(k+1).
E.g.f. (2 - 2*x)*(1 - 2*x^3/(8*x^2 - 4*x + (x^2 - 4*x + 2)*G(0)))/(x^2 - 4*x + 2) where G(k) = k^2 + k*(x+4) + 2*x + 3 - x*(k+1)*(k+3)^2 /G(k+1).
G.f.: 1 + x/G(0) where G(k) = 1 - 3*x*(k+1) - 2*x^2*(k+1)*(k+2)/G(k+1).
G.f.: 1/G(0) where G(k) = 1 - x*(k+1)/( 1 - 2*x*(k+1)/G(k+1) ).
G.f.: 1 + x/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - 2*x^2*(2*k+1)*(2*k+2)/( 1 - 3*x*(2*k+2) - 2*x^2*(2*k+2)*(2*k+3)/Q(k+1) ).
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/( 2*x^2*(k+1)^2 - (1-x-3*x*k)*(1-4*x-3*x*k)/T(k+1) ). (End)
a(n) is always odd. For odd prime p and n >= 1, a((p-1)*n) = 0 (mod p). - Peter Bala, Sep 18 2013
a(n) = log(2)* Integral_{x>=0} floor(x)^n * 2^(-x) dx. - Peter Bala, Feb 06 2015
For n > 0, a(n) = Re(polygamma(n, i*log(2)/(2*Pi))/(2*Pi*i)^(n+1)) - n!/(2*log(2)^(n+1)). - Vladimir Reshetnikov, Oct 15 2015
a(n) = Sum_{k=1..n} (k*b2(k-1)*(k)!*Stirling2(n, k)), n>0, a(0)=1, where b2(n) is the n-th Bernoulli number of the second kind. - Vladimir Kruchinin, Nov 21 2016
Conjecture: a(n) = Sum_{k=0..2^(n-1)-1} A284005(k) for n > 0 with a(0) = 1. - Mikhail Kurkov, Jul 08 2018
a(n) = A074206(k) for squarefree k with n prime factors. In particular a(n) = A074206(A002110(n)). - Amiram Eldar, May 13 2019
For n > 0, a(n) = -(-1)^n / 2 * PHI(2, -n, 0), where PHI(z, s, a) is the Lerch zeta function. - Federico Provvedi, Sep 05 2020
a(n) = Sum_{s in S_n} Product_{i=1..n} binomial(i,s(i)-1), where s ranges over the set S_n of permutations of [n]. - Jose A. Rodriguez, Feb 02 2021
Sum_{n>=0} 1/a(n) = 2.425674839121428857970063350500499393706641093287018840857857170864211946122664... - Vaclav Kotesovec, Jun 17 2021
From Jacob Sprittulla, Oct 05 2021: (Start)
The following identities hold for sums over Stirling numbers of the second kind with even or odd second argument:
a(n) = 2 * Sum_{k=0..floor(n/2)} ((2k)! * Stirling2(n,2*k) ) - (-1)^n = 2*A052841-(-1)^n
a(n) = 2 * Sum_{k=0..floor(n/2)} ((2k+1)!* Stirling2(n,2*k+1))+ (-1)^n = 2*A089677+(-1)^n
a(n) = Sum_{k=1..floor((n+1)/2)} ((2k-1)!* Stirling2(n+1,2*k))
a(n) = Sum_{k=0..floor((n+1)/2)} ((2k)! * Stirling2(n+1,2*k+1)). (End)

A001850 Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).

Original entry on oeis.org

1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
Offset: 0

Views

Author

Keywords

Comments

Number of paths from (0,0) to (n,n) in an n X n grid using only steps north, northeast and east (i.e., steps (1,0), (1,1), and (0,1)).
Also the number of ways of aligning two sequences (e.g., of nucleotides or amino acids) of length n, with at most 2*n gaps (-) inserted, so that while unnecessary gappings: - -a a- - are forbidden, both b- and -b are allowed. (If only other of the latter is allowed, then the sequence A000984 gives the number of alignments.) There is an easy bijection from grid walks given by Dickau to such set of alignments (e.g., the straight diagonal corresponds to the perfect alignment with no gaps). - Antti Karttunen, Oct 10 2001
Also main diagonal of array A008288 defined by m(i,1) = m(1,j) = 1, m(i,j) = m(i-1,j-1) + m(i-1,j) + m(i,j-1). - Benoit Cloitre, May 03 2002
So, as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= n from any given point. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 26 2022
a(n) is the number of n-matchings of a comb-like graph with 2*n teeth. Example: a(2) = 13 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has 13 2-matchings: any of the six possible pairs of teeth and {Aa, BC}, {Aa, CD}, {Bb, CD}, {Cc, AB}, {Dd, AB}, {Dd, BC}, {AB, CD}. - Emeric Deutsch, Jul 02 2002
Number of ordered trees with 2*n+1 edges, having root of odd degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
The sum of the first n coefficients of ((1 - x) / (1 - 2*x))^n is a(n-1). - Michael Somos, Sep 28 2003
Row sums of A063007 and A105870. - Paul Barry, Apr 23 2005
The Hankel transform (see A001906 for definition) of this sequence is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
Also number of paths from (0,0) to (n,0) using only steps U = (1,1), H = (1,0) and D =(1,-1), U can have 2 colors and H can have 3 colors. - N-E. Fahssi, Jan 27 2008
Equals row sums of triangle A152250 and INVERT transform of A109980: (1, 2, 8, 36, 172, 852, ...). - Gary W. Adamson, Nov 30 2008
Number of overpartitions in the n X n box (treat a walk of the type in the first comment as an overpartition, by interpreting a NE step as N, E with the part thus created being overlined). - William J. Keith, May 19 2017
Diagonal of rational functions 1/(1 - x - y - x*y), 1/(1 - x - y*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Dimensions of endomorphism algebras End(R^{(n)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023
a(n) is the number of ways to tile a strip of length n with white squares, black squares, and red dominos, where we must have an equal number of white and black squares. - Greg Dresden and Leo Zhang, Jul 11 2025

Examples

			G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
		

References

  • Frits Beukers, Arithmetic properties of Picard-Fuchs equations, Séminaire de Théorie des nombres de Paris, 1982-83, Birkhäuser Boston, Inc.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 2, 1999; see Example 6.3.8 and Problem 6.49.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.

Crossrefs

Main diagonal of A064861.
Column k=2 of A262809 and A263159.

Programs

  • Maple
    seq(add(multinomial(n+k,n-k,k,k),k=0..n),n=0..20); # Zerinvary Lajos, Oct 18 2006
    seq(orthopoly[P](n,3), n=0..100); # Robert Israel, Nov 03 2015
  • Mathematica
    f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *)
    a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *)
    CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *)
    Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
    a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *)
    a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
  • Maxima
    a(n):=coeff(expand((1+3*x+2*x^2)^n),x,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1);} /* Michael Somos, Sep 23 2006 */
    
  • PARI
    a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [0,1], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k)); \\ Joerg Arndt, May 11 2013
    
  • PARI
    my(x='x+O('x^30)); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
    
  • Python
    # from Nick Hobson.
    def f(a, b):
        if a == 0 or b == 0:
            return 1
        return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1)
    [f(n, n) for n in range(7)]
    
  • Python
    from gmpy2 import divexact
    A001850 = [1, 3]
    for n in range(2,10**3):
        A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2],n))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    a = lambda n: hypergeometric([-n, -n], [1], 2)
    [simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014

Formula

a(n) = P_n(3), where P_n is n-th Legendre polynomial.
G.f.: 1 / sqrt(1 - 6*x + x^2).
a(n) = a(n-1) + 2*A002002(n) = Sum_{j} A063007(n, j). - Henry Bottomley, Jul 02 2001
Dominant term in asymptotic expansion is binomial(2*n, n)/2^(1/4)*((sqrt(2) + 1)/2)^(2*n + 1)*(1 + c_1/n + c_2/n^2 + ...). - Michael David Hirschhorn
a(n) = Sum_{i=0..n} (A000079(i)*A008459(n, i)) = Sum_{i=0..n} (2^i * C(n, i)^2). - Antti Karttunen, Oct 10 2001
a(n) = Sum_{k=0..n} C(n+k, n-k)*C(2*k, k). - Benoit Cloitre, Feb 13 2003
a(n) = Sum_{k=0..n} C(n, k)^2 * 2^k. - Michael Somos, Oct 08 2003
a(n - 1) = coefficient of x^n in A120588(x)^n if n>=0. - Michael Somos, Apr 11 2012
G.f. of a(n-1) = 1 / (1 - x / (1 - 2*x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ...)))))). - Michael Somos, May 11 2012
INVERT transform is A109980. BINOMIAL transform is A080609. BINOMIAL transform of A006139. PSUM transform is A089165. PSUMSIGN transform is A026933. First backward difference is A110170. - Michael Somos, May 11 2012
E.g.f.: exp(3*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..n} C(2*n-k, n)*C(n, k). - Paul Barry, Apr 23 2005
a(n) = Sum_{k>=n} binomial(k, n)^2/2^(k+1). - Vladeta Jovovic, Aug 25 2006
a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 23 2006
D-finite with recurrence: a(-1) = a(0) = 1; n*a(n) = 3*(2*n-1)*a(n-1) - (n-1)*a(n-2). Eq (4) in T. D. Noe's article in JIS 9 (2006) #06.2.7.
Define general Delannoy numbers by (i,j > 0): d(i,0) = d(0,j) = 1 =: d(0,0) and d(i,j) = d(i-1,j-1) + d(i-2,j-1) + d(i-1,j). Then a(k) = Sum_{j >= 0} d(k,j)^2 + d(k-1,j)^2 = A026933(n)+A026933(n-1). This is a special case of the following formula for general Delannoy numbers: d(k,j) = Sum_{i >= 0, p=0..n} d(p, i) * d(n-p, j-i) + d(p-1, i) * d(n-p-1, j-i-1). - Peter E John, Oct 19 2006
Coefficient of x^n in (1 + 3*x + 2*x^2)^n. - N-E. Fahssi, Jan 11 2008
a(n) = A008288(A046092(n)). - Philippe Deléham, Apr 08 2009
G.f.: 1/(1 - x - 2*x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, May 28 2009
G.f.: d/dx log(1/(1 - x*A001003(x))). - Vladimir Kruchinin, Apr 19 2011
G.f.: 1/(2*Q(0) + x - 1) where Q(k) = 1 + k*(1-x) - x - x*(k + 1)*(k + 2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = Sum_{k=0..n} C(n,k) * C(n+k,k). - Joerg Arndt, May 11 2013
G.f.: G(0), where G(k) = 1 + x*(6 - x)*(4*k + 1)/(4*k + 2 - 2*x*(6-x)*(2*k + 1)*(4*k + 3)/(x*(6 - x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k + 1)/(x*(6 - x)*(2*k + 1) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n)^2 = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k) = A243949(n). - Paul D. Hanna, Aug 17 2014
a(n) = hypergeom([-n, -n], [1], 2). - Peter Luschny, Nov 19 2014
a(n) = Sum_{k=0..n/2} C(n-k,k) * 3^(n-2*k) * 2^k * C(n,k). - Vladimir Kruchinin, Jun 29 2015
a(n) = A049600(n, n-1).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A126086 and A274668. - Peter Bala, Jan 15 2020
a(n) ~ c * (3 + 2*sqrt(2))^n / sqrt(n), where c = 1/sqrt(4*Pi*(3*sqrt(2)-4)) = 0.572681... (Banderier and Schwer, 2005). - Amiram Eldar, Jun 07 2020
a(n+1) = 3*a(n) + 2*Sum_{l=1..n} A006318(l)*a(n-l). [Eq. (1.16) in Qi-Shi-Guo (2016)]
a(n) ~ (1 + sqrt(2))^(2*n+1) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 09 2023
a(n-1) + a(n) = A241023(n) for n >= 1. - Peter Bala, Sep 18 2024
a(n) = Sum_{k=0..n} C(n+k, 2*k) * C(2*k, k). - Greg Dresden and Leo Zhang, Jul 11 2025

Extensions

New name and reference Sep 15 1995
Formula and more references from Don Knuth, May 15 1996

A227578 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 14, 29, 8, 1, 1, 1, 42, 290, 185, 16, 1, 1, 1, 132, 3532, 7680, 1257, 32, 1, 1, 1, 429, 49100, 456033, 238636, 8925, 64, 1, 1, 1, 1430, 750325, 34426812, 77767945, 8285506, 65445, 128, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

Conjecture: column k is asymptotic to c(k) * (k+1)^(k*n)/n^((k^2-1)/2), where c(k) is a constant dependent only on k. - Vaclav Kotesovec, Jul 21 2013

Examples

			A(4,0) = 1: [()].
A(3,1) = 4: [(3),(0)], [(3),(1),(0)], [(3),(2),(0)], [(3),(2),(1),(0)].
A(2,2) = 5: [(2,2),(0,2),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)].
A(1,3) = 1: [(1,1,1),(0,1,1),(0,0,1),(0,0,0)].
A(0,4) = 1: [(0,0,0,0)].
Square array A(n,k) begins:
  1,  1,    1,      1,        1,           1, ...
  1,  1,    1,      1,        1,           1, ...
  1,  2,    5,     14,       42,         132, ...
  1,  4,   29,    290,     3532,       49100, ...
  1,  8,  185,   7680,   456033,    34426812, ...
  1, 16, 1257, 238636, 77767945, 36470203156, ...
		

Crossrefs

Rows n=0+1, 2-10 give: A000012, A000108(k+1), A181197(k+2), A227584, A227602, A227603, A227604, A227605, A227606, A227607.
Main diagonal gives: A227579.
Cf. A060854 (steps decrement one component by 1), A262809, A263159.
A181196 is a similar but different array.

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
          i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
        end:
    A:= (n, k)-> `if`(k=0, 1, b([n$k])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = If[ l[[-1]] == 0, 1, Sum[ Sum[ b[ReplacePart[l, i -> j]], {j, If[i == 1, 0, l[[i-1]]], l[[i]]-1}], {i, 1, Length[l]}]]; a[n_, k_] := If[k == 0, 1, b[Array[n&, k]]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)

A227655 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_k) we have abs(p_{i}-p_{i+1}) <= 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 4, 1, 1, 1, 24, 44, 8, 1, 1, 1, 120, 896, 320, 16, 1, 1, 1, 720, 29392, 33904, 2328, 32, 1, 1, 1, 5040, 1413792, 7453320, 1281696, 16936, 64, 1, 1, 1, 40320, 93770800, 2940381648, 1897242448, 48447504, 123208, 128, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			A(2,2) = 2^2 = 4:
        (1,2)       (0,1)
       /     \     /     \
  (2,2)       (1,1)       (0,0)
       \     /     \     /
        (2,1)       (1,0)
Square array A(n,k) begins:
  1, 1,  1,     1,        1,            1, ...
  1, 1,  2,     6,       24,          120, ...
  1, 1,  4,    44,      896,        29392, ...
  1, 1,  8,   320,    33904,      7453320, ...
  1, 1, 16,  2328,  1281696,   1897242448, ...
  1, 1, 32, 16936, 48447504, 482913033152, ...
		

Crossrefs

Main diagonal gives A227673.

Programs

  • Maple
    b:= proc(l) option remember; `if`({l[]}={0}, 1, add(
          `if`(l[i]=0 or i>1 and 1 `if`(k<2, 1, b([n$k])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = If[Union[l] == {0}, 1, Sum[If[l[[i]] == 0 || i>1 && 1 < Abs[l[[i-1]] - l[[i]] + 1] || i l[[i]]-1]]], {i, 1, Length[l]}]]; a[n_, k_] := If[k<2, 1, b[Array[n&, k]]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

A330942 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 7, 1, 1, 1, 8, 75, 32, 1, 1, 1, 16, 1105, 2712, 161, 1, 1, 1, 32, 20821, 449102, 116681, 842, 1, 1, 1, 64, 478439, 122886128, 231522891, 5366384, 4495, 1, 1, 1, 128, 12977815, 50225389432, 975712562347, 131163390878, 256461703, 24320, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with multiple edges allowed and with k edges and no isolated vertices. When n=2 these objects are multigraphs.

Examples

			Array begins:
============================================================
n\k | 0 1    2         3              4                5
----+-------------------------------------------------------
  0 | 1 1    1         1              1                1 ...
  1 | 1 1    2         4              8               16 ...
  2 | 1 1    7        75           1105            20821 ...
  3 | 1 1   32      2712         449102        122886128 ...
  4 | 1 1  161    116681      231522891     975712562347 ...
  5 | 1 1  842   5366384   131163390878 8756434117294432 ...
  6 | 1 1 4495 256461703 78650129124911 ...
  ...
The A(2,2) = 7 matrices are:
   [1 0]  [1 0]  [1 0]  [1 1]  [1 0]  [1 0]  [1 1]
   [1 0]  [0 1]  [0 1]  [1 0]  [1 1]  [0 1]  [1 1]
   [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [1 1]
   [0 1]  [0 1]  [1 0]
		

Crossrefs

Rows n=1..3 are A000012, A121316, A136246.
Columns k=0..3 are A000012, A000012, A226994, A137220.
The version with nonnegative integer entries is A331315.
Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are:
All solutions: A262809 (all), A331567 (distinct rows).
Up to row permutation: A188392, A188445, A331126, A331039.
Up to column permutation: this sequence, A331571, A331277, A331569.
Nonisomorphic: A331461, A331510, A331508, A331509.
Cf. A331638.

Programs

  • Mathematica
    T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]];
    Table[T[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 10 2020, from PARI *)
  • PARI
    T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n,k) = Sum_{j=0..n*k} binomial(binomial(j,n)+k-1, k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A262809(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331277(n, j).
A331638(n) = Sum_{d|n} A(n/d, d).

A263159 Number A(n,k) of lattice paths starting at {n}^k and ending when k or any component equals 0, using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 15, 157, 63, 1, 1, 1, 31, 2101, 5419, 321, 1, 1, 1, 63, 32461, 717795, 220561, 1683, 1, 1, 1, 127, 580693, 142090291, 328504401, 9763807, 8989, 1, 1, 1, 255, 11917837, 39991899123, 944362553521, 172924236255, 454635973, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,       1,            1,                1, ...
  1, 1,    3,       7,           15,               31, ...
  1, 1,   13,     157,         2101,            32461, ...
  1, 1,   63,    5419,       717795,        142090291, ...
  1, 1,  321,  220561,    328504401,     944362553521, ...
  1, 1, 1683, 9763807, 172924236255, 7622403922836151, ...
		

Crossrefs

Rows n=0-1 give: A000012, A255047.
Main diagonal gives A263160.

Programs

  • Maple
    s:= proc(n) option remember; `if`(n=0, {[]},
          map(x-> [[x[], 0], [x[], 1]][], s(n-1)))
        end:
    b:= proc(l) option remember; `if`(l=[] or l[1]=0, 1,
           add((p-> `if`(p[1]<0, 0, `if`(p[1]=0, 1, b(p)))
           )(sort(l-x)), x=s(nops(l)) minus {[0$nops(l)]}))
        end:
    A:= (n, k)-> b([n$k]):
    seq(seq(A(n,d-n), n=0..d), d=0..10);
  • Mathematica
    g[k_] := Table[Reverse[IntegerDigits[n, 2]][[;;k]], {n, 2^k+1, 2^(k+1)-1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[k]}]];
    a[n_, k_] := If[n == 0 || k == 0 || k == 1, 1, b[Table[n, {k}]]];
    Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz in A115866 *)

A055203 Number of different relations between n intervals on a line.

Original entry on oeis.org

1, 1, 13, 409, 23917, 2244361, 308682013, 58514835289, 14623910308237, 4659168491711401, 1843200116875263613, 886470355671907534969, 509366445167037318008557, 344630301458257894126724041, 271188703889907190388528763613, 245570692377888837925941696215449
Offset: 0

Views

Author

Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Jun 22 2000

Keywords

Comments

From Peter Bala, Jan 30 2018: (Start)
Number of alignments of n strings of length 2 (see Slowinski).
Conjectures: a(n) == 1 (mod 12); for fixed k, the sequence a(n) (mod k) eventually becomes periodic with exact period a divisor of phi(k), where phi(k) is Euler's totient function A000010. (End)

Examples

			In case n = 2 this is the Delannoy number a(2) = D(2,2) = 13.
a(2) = 13 because if you have two intervals [a1,a2] and [b1,b2], using a for a1 or a2 and b for b1 or b2 and writing c if an a is at the same place as a b, we get the following possibilities: aabb, acb, abab, cab, abc, baab, abba, cc, bac, cba, baba, bca, bbaa.
		

References

  • S. R. Schwer, Dépendances temporelles: les mots pour le dire, Journées Intelligence Artificielle, 1998.
  • S. R. Schwer, Enumerating and generating Allen's algebra, in preparation.

Crossrefs

Programs

  • Maple
    lambda := proc(p,n) option remember; if n = 1 then if p = 2 then RETURN(1) else RETURN(0) fi; else RETURN((p*(p-1)/2)*(lambda(p,n-1)+2*lambda(p-1,n-1)+lambda(p-2,n-1))) fi; end; A055203 := n->add(lambda(i,n),i=2..2*n);
    A055203 := proc(n) local k; add(A078739(n,k)*k!,k=0..2*n)/2^n end:
    seq(A055203(n),n=0..15); # Peter Luschny, Mar 25 2011
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> ceil(add(b(n+k)*binomial(n, k), k=0..n)/2^(n+1)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 10 2018
  • Mathematica
    a[n_] := Sum[((m-1)*m)^n / 2^(m+n+1), {m, 0, Infinity}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 10 2011, after Vladeta Jovovic *)
    With[{r = 2}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) = Sum_{i=2..2n} lambda(i, n), with lambda(p, 1) = 1 if p = 2, otherwise 0; lambda(p, n) = (p*(p-1)/2)*(lambda(p, n-1) + 2*lambda(p-1, n-1) + lambda(p-2, n-1)).
lambda(p, n) = Sum_k[( - 1)^(p + k) * C(p, k) * ((k - 1)*k/2)^n]. So if T(m, 0), T(m, 1), ..., T(m, m) is any row of A035317 with m >= 2n - 1 then a(n) = Sum_j[(-1)^j * T(m, j) * ((m - j + 1)*(m - j)/2)^n]; e.g., a(2) = 13 = 1*6^2 - 3*3^2 + 4*1^2 - 2*0^2 = 1*10^2 - 4*6^2 + 7*3^2 - 6*1^2 + 3*0^2 = 1*15^2 - 5*10^2 + 11*6^2 - 13*3^2 + 9*1^2 - 3*0^2 etc. while a(3) = 409 = 1*15^3 - 5*10^3 + 11*6^3 - 13*3^3 + 9*1^3 - 3*0^3 etc. - Henry Bottomley, Jan 03 2001
Row sums of A122193. - Vladeta Jovovic, Aug 24 2006
a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*A121251(k). - Vladeta Jovovic, Aug 25 2006
E.g.f.: Sum_{m>=0} exp(x*binomial(m,2))/2^(m+1). - Vladeta Jovovic, Sep 24 2006
a(n) = Sum_{m>=0} binomial(m,2)^n/2^(m+1). - Vladeta Jovovic, Aug 17 2006
a(n) = (1/2^n)*Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A000670(n+k). - Vladeta Jovovic, Aug 17 2006
a(n) ~ n! * n^n * 2^(n-1) / (exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Mar 15 2014
From Peter Bala, Jan 30 2018: (Start)
a(n) = Sum_{k = 2..2*n} Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i*(i-1)/2)^n.
a(n) = (1/2^(n+1))*Sum_{k = 0..n} binomial(n,k)*A000670(n+k) for n >= 1. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 04 2000
More terms from N. J. A. Sloane, Jan 03 2001

A229142 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2013

Keywords

Comments

Column k is the diagonal of the rational function 1 / (1 - Sum_{j=1..k} x_j - Product_{j=1..k} x_j) for k>1. - Seiichi Manyama, Jul 10 2020

Examples

			A(1,3) = 3*2+1 = 7:
          (0,1,1)-(0,0,1)
         /       X       \
  (1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
       \ \       X       / /
        \ (1,1,0)-(1,0,0) /
         `---------------´
Square array A(n,k) begins:
  1, 1,    1,       1,           1,               1, ...
  1, 1,    3,       7,          25,             121, ...
  1, 1,   13,     115,        2641,          114121, ...
  1, 1,   63,    2371,      392641,       169417921, ...
  1, 1,  321,   54091,    67982041,    308238414121, ...
  1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
		

Crossrefs

Rows n=0-1 give: A000012, A038507 (for k>1).
Main diagonal gives: A229267.

Programs

  • Maple
    with(combinat):
    A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = Sum_{j=0..n} multinomial(n+(k-1)*j; n-j, {j}^k) for k>1, A(n,0) = A(n,1) = 1.
G.f. of column k: Sum_{j>=0} (k*j)!/j!^k * x^j / (1-x)^(k*j+1). for k>1. - Seiichi Manyama, Jul 10 2020

A225094 Number A(n,k) of lattice paths without interior points from {n}^k to {0}^k using steps that decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 6, 2, 0, 1, 1, 24, 54, 2, 0, 1, 1, 120, 1944, 384, 2, 0, 1, 1, 720, 99000, 132000, 2550, 2, 0, 1, 1, 5040, 6966000, 79716000, 8059800, 16506, 2, 0, 1, 1, 40320, 655678800, 78928416000, 57010275000, 471369024, 105840, 2, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2013

Keywords

Comments

An interior point p = (p_1, ..., p_k) has k>0 components with 0

Examples

			A(n,0) = 1: [()].
A(0,k) = 1: [{0}^k].
A(1,1) = 1: [(1), (0)].
A(2,1) = 0, there is no path from (2) to (0) without interior points.
A(1,2) = 2: [(1,1), (0,1), (0,0)], [(1,1), (1,0), (0,0)].
A(1,3) = 6: [(1,1,1), (0,1,1), (0,0,1), (0,0,0)], [(1,1,1), (0,1,1), (0,1,0), (0,0,0)], [(1,1,1), (1,0,1), (0,0,1), (0,0,0)], [(1,1,1), (1,0,1), (1,0,0), (0,0,0)], [(1,1,1), (1,1,0), (0,1,0), (0,0,0)], [(1,1,1), (1,1,0), (1,0,0), (0,0,0)].
Square array A(n,k) begins:
  1, 1, 1,     1,         1,              1, ...
  1, 1, 2,     6,        24,            120, ...
  1, 0, 2,    54,      1944,          99000, ...
  1, 0, 2,   384,    132000,       79716000, ...
  1, 0, 2,  2550,   8059800,    57010275000, ...
  1, 0, 2, 16506, 471369024, 38606650125120, ...
		

Crossrefs

Columns k=0, 2-4 give: A000012, A040000, A060774, A225220.
Rows n=0-4 give: A000012, A000142, A071798(k) (for k>0), A225096, A225221.
Main diagonal gives: A225111.
Cf. A089759 (unrestricted paths), A210472, A262809, A263159.

Programs

  • Maple
    b:= proc(n, l) option remember; local m; m:= nops(l);
          `if`(m=0 or l[m]=0, 1, `if`(l[1]>0 and l[m] b(n, [n$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = With[{m = Length[l]}, If[m == 0 || l[[m]] == 0, 1, If[l[[1]] > 0 && l[[m]] < n, 0, Sum[If[l[[i]] == 0, 0, b[n, Sort[ReplacePart[l, i -> l[[i]] - 1]]]], {i, 1, m}]]] ]; a[n_, k_] := b[n, Array[n&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)

A331461 Array read by antidiagonals: A(n,k) is the number of nonequivalent binary matrices with k columns and any number of nonzero rows with n ones in every column up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 8, 4, 1, 1, 1, 7, 23, 16, 5, 1, 1, 1, 11, 66, 93, 30, 6, 1, 1, 1, 15, 212, 652, 332, 50, 7, 1, 1, 1, 22, 686, 6369, 6414, 1062, 80, 8, 1, 1, 1, 30, 2389, 79568, 226041, 56712, 3117, 120, 9, 1, 1, 1, 42, 8682, 1256425, 12848128, 7295812, 441881, 8399, 175, 10, 1, 1
Offset: 0

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

A(n,k) is the number of non-isomorphic set multipartitions (multiset of sets) with k parts each part has size n.

Examples

			Array begins:
===========================================================
n\k | 0 1 2   3    4       5          6              7
----+-----------------------------------------------------
  0 | 1 1 1   1    1       1          1              1 ...
  1 | 1 1 2   3    5       7         11             15 ...
  2 | 1 1 3   8   23      66        212            686 ...
  3 | 1 1 4  16   93     652       6369          79568 ...
  4 | 1 1 5  30  332    6414     226041       12848128 ...
  5 | 1 1 6  50 1062   56712    7295812     1817321457 ...
  6 | 1 1 7  80 3117  441881  195486906   200065951078 ...
  7 | 1 1 8 120 8399 3006771 4298181107 17131523059493 ...
  ...
The A(2,3) = 8 matrices are:
  [1 0 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 1]
  [1 0 0]  [1 0 0]  [1 0 0]  [1 1 0]  [1 0 1]  [1 1 0]  [1 0 1]  [1 1 1]
  [0 1 0]  [0 1 0]  [0 1 0]  [0 0 1]  [0 1 0]  [0 0 1]  [0 1 1]
  [0 1 0]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]
  [0 0 1]  [0 0 1]
  [0 0 1]
		

Programs

  • PARI
    \\ See A304942 for Blocks
    T(n,k)={Blocks(k, n*k, n)}
    { for(n=0, 7, for(k=0, 6, print1(T(n,k), ", ")); print) }

Formula

A306018(n) = Sum_{d|n} A(n/d, d).
Showing 1-10 of 37 results. Next