cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A262809 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 13, 1, 1, 1, 75, 409, 63, 1, 1, 1, 541, 23917, 16081, 321, 1, 1, 1, 4683, 2244361, 10681263, 699121, 1683, 1, 1, 1, 47293, 308682013, 14638956721, 5552351121, 32193253, 8989, 1, 1, 1, 545835, 58514835289, 35941784497263, 117029959485121, 3147728203035, 1538743249, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2015

Keywords

Comments

Also, A(n,k) is the number of alignments for k sequences of length n each (Slowinski 1998).
Row r > 0 is asymptotic to sqrt(r*Pi) * (r^(r-1)/(r-1)!)^n * n^(r*n+1/2) / (2^(r/2) * exp(r*n) * (log(2))^(r*n+1)), or equivalently to sqrt(r) * (r^(r-1)/(r-1)!)^n * (n!)^r / (2^r * (Pi*n)^((r-1)/2) * (log(2))^(r*n+1)). - Vaclav Kotesovec, Mar 23 2016
From Vaclav Kotesovec, Mar 23 2016: (Start)
Column k > 0 is asymptotic to sqrt(c(k)) * d(k)^n / (Pi*n)^((k-1)/2), where c(k) and d(k) are roots of polynomial equations of degree k, independent on n.
---------------------------------------------------
k d(k)
---------------------------------------------------
2 5.8284271247461900976033774484193...
3 56.9476283720414911685286267804411...
4 780.2794068067951456595241495989622...
5 13755.2719024115081712083954421541320...
6 296476.9162644200814909862281498491264...
7 7553550.6198338218721069097516499501996...
8 222082591.6017202421029000117685530884167...
9 7400694480.0494436216324852038000444393262...
10 275651917450.6709238286995776605620357737005...
---------------------------------------------------
d(k) is a root of polynomial:
---------------------------------------------------
k=2, 1 - 6*d + d^2
k=3, -1 + 3*d - 57*d^2 + d^3
k=4, 1 - 12*d - 218*d^2 - 780*d^3 + d^4
k=5, -1 + 5*d - 1260*d^2 - 3740*d^3 - 13755*d^4 + d^5
k=6, 1 - 18*d - 5397*d^2 - 123696*d^3 + 321303*d^4 - 296478*d^5 + d^6
k=7, -1 + 7*d - 24031*d^2 - 374521*d^3 - 24850385*d^4 + 17978709*d^5 - 7553553*d^6 + d^7
k=8, 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8
(End)
d(k) = (2^(1/k) - 1)^(-k). - David Bevan, Apr 07 2022
d(k) is asymptotic to (k/log(2))^k/sqrt(2). - David Bevan, Apr 07 2022
A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column. - Andrew Howroyd, Jan 23 2020

Examples

			A(2,2) = 13: [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,1),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)].
Square array A(n,k) begins:
  1, 1,    1,        1,             1,                   1, ...
  1, 1,    3,       13,            75,                 541, ...
  1, 1,   13,      409,         23917,             2244361, ...
  1, 1,   63,    16081,      10681263,         14638956721, ...
  1, 1,  321,   699121,    5552351121,     117029959485121, ...
  1, 1, 1683, 32193253, 3147728203035, 1050740615666453461, ...
		

Crossrefs

Columns: A000012 (k=0 and k=1), A001850 (k=2), A126086 (k=3), A263064 (k=4), A263065 (k=5), A263066 (k=6), A263067 (k=7), A263068 (k=8), A263069 (k=9), A263070 (k=10).
Rows: A000012 (n=0), A000670 (n=1), A055203 (n=2), A062208 (n=3), A062205 (n=4), A263061 (n=5), A263062 (n=6), A062204 (n=7), A263063 (n=8), A263071 (n=9), A263072 (n=10).
Main diagonal: A262810.

Programs

  • Maple
    A:= (n, k)-> add(add((-1)^i*binomial(j, i)*
         binomial(j-i, n)^k, i=0..j), j=0..k*n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[, 0] =  1; A[n, k_] := Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 22 2016, after Alois P. Heinz *)
  • PARI
    T(n,k) = {my(m=n*k); sum(j=0, m, binomial(j,n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020

Formula

A(n,k) = Sum_{j=0..k*n} Sum_{i=0..j} (-1)^i*C(j,i)*C(j-i,n)^k.
A(n,k) = Sum_{i >= 0} binomial(i,n)^k/2^(i+1). - Peter Bala, Jan 30 2018
A(n,k) = Sum_{j=0..n*k} binomial(j,n)^k * Sum_{i=j..n*k} (-1)^(i-j) * binomial(i,j). - Andrew Howroyd, Jan 23 2020

A263159 Number A(n,k) of lattice paths starting at {n}^k and ending when k or any component equals 0, using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 15, 157, 63, 1, 1, 1, 31, 2101, 5419, 321, 1, 1, 1, 63, 32461, 717795, 220561, 1683, 1, 1, 1, 127, 580693, 142090291, 328504401, 9763807, 8989, 1, 1, 1, 255, 11917837, 39991899123, 944362553521, 172924236255, 454635973, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2015

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,       1,            1,                1, ...
  1, 1,    3,       7,           15,               31, ...
  1, 1,   13,     157,         2101,            32461, ...
  1, 1,   63,    5419,       717795,        142090291, ...
  1, 1,  321,  220561,    328504401,     944362553521, ...
  1, 1, 1683, 9763807, 172924236255, 7622403922836151, ...
		

Crossrefs

Rows n=0-1 give: A000012, A255047.
Main diagonal gives A263160.

Programs

  • Maple
    s:= proc(n) option remember; `if`(n=0, {[]},
          map(x-> [[x[], 0], [x[], 1]][], s(n-1)))
        end:
    b:= proc(l) option remember; `if`(l=[] or l[1]=0, 1,
           add((p-> `if`(p[1]<0, 0, `if`(p[1]=0, 1, b(p)))
           )(sort(l-x)), x=s(nops(l)) minus {[0$nops(l)]}))
        end:
    A:= (n, k)-> b([n$k]):
    seq(seq(A(n,d-n), n=0..d), d=0..10);
  • Mathematica
    g[k_] := Table[Reverse[IntegerDigits[n, 2]][[;;k]], {n, 2^k+1, 2^(k+1)-1}];
    b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[k]}]];
    a[n_, k_] := If[n == 0 || k == 0 || k == 1, 1, b[Table[n, {k}]]];
    Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz in A115866 *)

A229142 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2013

Keywords

Comments

Column k is the diagonal of the rational function 1 / (1 - Sum_{j=1..k} x_j - Product_{j=1..k} x_j) for k>1. - Seiichi Manyama, Jul 10 2020

Examples

			A(1,3) = 3*2+1 = 7:
          (0,1,1)-(0,0,1)
         /       X       \
  (1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
       \ \       X       / /
        \ (1,1,0)-(1,0,0) /
         `---------------´
Square array A(n,k) begins:
  1, 1,    1,       1,           1,               1, ...
  1, 1,    3,       7,          25,             121, ...
  1, 1,   13,     115,        2641,          114121, ...
  1, 1,   63,    2371,      392641,       169417921, ...
  1, 1,  321,   54091,    67982041,    308238414121, ...
  1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
		

Crossrefs

Rows n=0-1 give: A000012, A038507 (for k>1).
Main diagonal gives: A229267.

Programs

  • Maple
    with(combinat):
    A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = Sum_{j=0..n} multinomial(n+(k-1)*j; n-j, {j}^k) for k>1, A(n,0) = A(n,1) = 1.
G.f. of column k: Sum_{j>=0} (k*j)!/j!^k * x^j / (1-x)^(k*j+1). for k>1. - Seiichi Manyama, Jul 10 2020

A229345 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by the same positive integer; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 22, 4, 1, 1, 25, 248, 188, 8, 1, 1, 121, 6506, 11380, 1712, 16, 1, 1, 721, 292442, 2359348, 577124, 16098, 32, 1, 1, 5041, 19450082, 1088626684, 991365512, 30970588, 154352, 64, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2013

Keywords

Examples

			A(2,2) = 22: [(2,2),(1,1),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)], [(2,2),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(1,2),(1,0),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(0,2),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(0,1),(0,0)], [(2,2),(2,1),(2,0),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,0)], [(2,2),(2,0),(1,0),(0,0)], [(2,2),(2,0),(0,0)].
Square array A(n,k) begins:
  1,  1,     1,        1,            1,                 1, ...
  1,  1,     3,        7,           25,               121, ...
  1,  2,    22,      248,         6506,            292442, ...
  1,  4,   188,    11380,      2359348,        1088626684, ...
  1,  8,  1712,   577124,    991365512,     4943064622568, ...
  1, 16, 16098, 30970588, 453530591824, 25162900228200976, ...
		

Crossrefs

Columns k=0-3 give: A000012, A011782, A132595(n+1), A229482.
Rows n=0-2 give: A000012, A038507 (for k>1), A229465.
Main diagonal gives: A229346.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`(m=0 or l[m]=0, 1,
          `if`(m>1, add(b(l-[j$m]), j=1..l[1]), 0)+
          add(add(b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..m))
        end:
    A:= (n, k)-> b([n$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Sep 24 2013
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[m == 0 || l[[m]] == 0, 1, If[m > 1, Sum[b[l - Array[j&, m]], {j, 1, l[[1]]}],  0] + Sum[Sum[b[Sort[ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, m}]]]; a[n_, k_] := b[Array[n&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)

A318191 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component by 1 such that for each point p we have abs(p_{i}-p_{(i mod k)+1}) <= 1 and the first component used is p_1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 6, 12, 4, 1, 1, 1, 24, 180, 72, 8, 1, 1, 1, 120, 4680, 5400, 432, 16, 1, 1, 1, 720, 187200, 914400, 162000, 2592, 32, 1, 1, 1, 5040, 10634400, 296438400, 178660800, 4860000, 15552, 64, 1, 1, 1, 40320, 813664800, 162273628800, 469551168000, 34907788800, 145800000, 93312, 128, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 07 2019

Keywords

Examples

			A(2,2) = 2^2 = 4:
                    (0,1)
                   /     \
  (2,2)-(1,2)-(1,1)       (0,0)
                   \     /
                    (1,0)
Square array A(n,k) begins:
  1, 1,  1,     1,         1,             1,                   1, ...
  1, 1,  1,     2,         6,            24,                 120, ...
  1, 1,  2,    12,       180,          4680,              187200, ...
  1, 1,  4,    72,      5400,        914400,           296438400, ...
  1, 1,  8,   432,    162000,     178660800,        469551168000, ...
  1, 1, 16,  2592,   4860000,   34907788800,     743761386086400, ...
  1, 1, 32, 15552, 145800000, 6820487308800, 1178106009360998400, ...
		

Crossrefs

Columns k=0+1, 2 give: A000012, A011782.
Rows n=0-2 give: A000012, A000142(n-1) for n>0, A322782/n for n>0.
Main diagonal gives A320443.
Cf. A227655.

Programs

  • Maple
    b:= proc(l) option remember; (n-> `if`(n<2 or max(l[])=0, 1,
          add(`if`(l[i]=0 or 1 `if`(k<2 or n=0, 1, b([n-1, n$k-1])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = With[{n = Length[l]}, If[n < 2 || Max[l ] == 0, 1, Sum[If[ l[[i]] == 0 ||1 < Abs[l[[If[i == 1, 0, i] - 1]] - l[[i]] + 1] || 1 < Abs[l[[If[i == n, 0, i] + 1]] - l[[i]] + 1], 0, b[ReplacePart[l, i -> l[[i]] - 1]]], {i, n}]]];
    A[n_, k_] :=  If[k < 2 || n == 0, 1, b[Join[{n - 1}, Table[n, {k - 1}]]]];
    Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 13 2020, after Maple *)

A227656 Number of lattice paths from {2}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 1, 4, 44, 896, 29392, 1413792, 93770800, 8201380224, 914570667792, 126651310675680, 21323599202141616, 4289517397262212416, 1016086393608958657680, 279937626985917460931616, 88754294249179769383418160, 32085579878185717054048193280, 13119328150439580260369558815248
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Comments

Number of linear extensions of garland or double fence poset. - Alexander Shashkov, Jul 26 2020

Examples

			a(2) = 2^2 = 4:
.
        (1,2)       (0,1)
       /     \     /     \
  (2,2)       (1,1)       (0,0)
       \     /     \     /
        (2,1)       (1,0)
.
a(3) = 44:
.
          (1,2,2)-(1,1,2)-(0,1,2)-(0,1,1)-(0,0,1)
         /       X       \       /       X       \
  (2,2,2)-(2,1,2) (1,2,1)-(1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
         \       X       /       \       X       /
          (2,2,1)-(2,1,1)-(2,1,0)-(1,1,0)-(1,0,0)
		

Crossrefs

Row n=2 of A227655.
Cf. A000079.

Formula

a(n) ~ c * d^n * n^(2*n + 1/2), where d = 0.197278552664313325820060688708960349... and c = 4.4668518532326348084863454883501... - Vaclav Kotesovec, Dec 25 2018

A227665 Number of lattice paths from {n}^3 to {0}^3 using steps that decrement one component by 1 such that for each point (p_1,p_2,p_3) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 6, 44, 320, 2328, 16936, 123208, 896328, 6520712, 47437640, 345104904, 2510609608, 18264477064, 132872558664, 966636864776, 7032203170760, 51158695924872, 372175277815624, 2707544336559112, 19697160911545032, 143295215053933448, 1042460827200624200
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(1) = 3! = 3*2*1 = 6:
            (0,1,1) - (0,0,1)
          /         X         \
  (1,1,1) - (1,0,1)   (0,1,0) - (0,0,0)
          \         X         /
            (1,1,0) - (1,0,0)
		

Crossrefs

Column k=3 of A227655.
Cf. A000142.

Programs

  • Maple
    a:= n-> (<<0|1>, <2|7>>^n. <<1, 6>>)[1, 1]:
    seq(a(n), n=0..25);

Formula

G.f.: (x-1)/(2*x^2+7*x-1).
a(n) = 7*a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(2)=6.

A227666 Number of lattice paths from {n}^4 to {0}^4 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_4) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 24, 896, 33904, 1281696, 48447504, 1831288096, 69221669104, 2616540574496, 98903777810704, 3738507768500896, 141313513441272304, 5341572177372667296, 201908456107703653904, 7632027293479058673696, 288486385024598708555504, 10904624832208006924120096
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(1) = 4! = 24.
		

Crossrefs

Column k=4 of A227655.
Cf. A000142.

Programs

  • Maple
    a:= n-> ceil((<<0|1|0>, <0|0|1>, <220|-89|40>>^n.
            <<10/11, 24, 896>>)[1, 1]):
    seq(a(n), n=0..25);

Formula

G.f.: (20*x^3-25*x^2+16*x-1)/(220*x^3-89*x^2+40*x-1).
a(n) = 40*a(n-1) -89*a(n-2) +220*a(n-3) for n>3, a(0)=1, a(1)=24, a(2)=896, a(3)=33904.

A227667 Number of lattice paths from {n}^5 to {0}^5 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_5) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 120, 29392, 7453320, 1897242448, 482913033152, 122911984813568, 31283451053916800, 7962224756951452544, 2026535155335964884480, 515791104488454210243072, 131278484324109833244067840, 33412829924638979294019463168, 8504190228674549912505288509440
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(1) = 5! = 120.
		

Crossrefs

Column k=5 of A227655.
Cf. A000142.

Programs

  • Maple
    a:= n-> coeff(series((173568*x^8 -3773248*x^7 +10330944*x^6 -719888*x^5 +1468896*x^4 -35208*x^3 -3608*x^2 +170*x-1) / (-98304*x^9 +4024832*x^8 -36900032*x^7 +37771968*x^6 -3950640*x^5 +5084576*x^4 -23648*x^3 -9016*x^2 +290*x-1), x, n+1), x, n): seq(a(n), n=0..20);

Formula

G.f.: (173568*x^8 -3773248*x^7 +10330944*x^6 -719888*x^5 +1468896*x^4 -35208*x^3 -3608*x^2 +170*x-1) / (-98304*x^9 +4024832*x^8 -36900032*x^7 +37771968*x^6 -3950640*x^5 +5084576*x^4 -23648*x^3 -9016*x^2 +290*x-1).

A227668 Number of lattice paths from {n}^6 to {0}^6 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_6) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 720, 1413792, 2940381648, 6173789662504, 12981179566917088, 27297846037161958056, 57403822541579269311072, 120712076511505386344017520, 253839841305922000782983605664, 533787802709908480895773030991840, 1122477022599575074944649300433060288
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(1) = 6! = 720.
		

Crossrefs

Column k=6 of A227655.
Cf. A000142.

Formula

G.f.: -(67322341490688000*x^20 +27865599006421811200*x^19 -8662296440668699099136*x^18 -16874516373657444974592*x^17 +27085359075023950995456*x^16 -1808862947855651445760*x^15 -1414381090428803492096*x^14 -3613053959743748878592*x^13
+1363837434430612756288*x^12 +93587353840530417152*x^11 -39568432789577322400*x^10 -4418148372274485344*x^9 +81199402070343168*x^8 +9376560118889840*x^7 -221663818632940*x^6 +2817001053384*x^5 -695598308*x^4 +124162308*x^3 -958790*x^2 +2064*x -1)
/ ( -13254524928000000*x^21 -271933737533440000*x^20 -5733118008692572160*x^19 +116739247952003395584000*x^18 +224369280219612051439616*x^17 -356501961858517247606784*x^16 +60501369697833888177152*x^15 +16382732593079984754944*x^14
+13383960686857306419456*x^13 -5739755254392736710336*x^12 -404736183389439184896*x^11 +144333130922005891104*x^10 +16946456787615943968*x^9 -22388465914256448*x^8 -24650905650633712*x^7 +544278444686228*x^6 -5641861520584*x^5 -1907901380*x^4 -244171188*x^3 +1549478*x^2 -2784*x +1).
Showing 1-10 of 23 results. Next