cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062248 Expansion of a Schwarzian ({f_{27|3}, tau} / (4*Pi)^2) in powers of q^3.

Original entry on oeis.org

1, -48, -216, 1536, -1560, -3024, 13824, -8736, -14040, 41712, -27216, -31968, 112128, -51072, -74304, 193536, -113880, -117936, 375408, -165984, -220752, 528384, -287712, -292032, 898560, -375024, -474768, 1126464, -598848, -585360, 1741824, -722400, -898776
Offset: 0

Views

Author

N. J. A. Sloane, Jul 01 2001

Keywords

Comments

The q-series f_{27|3} is the g.f. for A062246. This is given on page 274 of McKay and Sebbar along with equation (8.2) which gives an expression for the g.f. A(q) of this sequence, but the left side is A(q^3) and the right side is A(q). - Michael Somos, Aug 12 2014
Ramanujan theta function: f(-q) (see A010815). Ramanujan Lambert series: Q(q) = E_4(q) (see A004009).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 48*x - 216*x^2 + 1536*x^3 - 1560*x^4 - 3024*x^5 + 13824*x^6 + ...
G.f. = 1 - 48*q^3 - 216*q^6 + 1536*q^9 - 1560*q^12 - 3024*q^15 + 13824*q^18 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(9), 8/2), 30); A[1] - 48*A[2] - 216*A[3] + 1536*A[4] - 1560*A[5]; /* Michael Somos, Aug 12 2014 */
  • Mathematica
    QP = QPochhammer; A = x*O[x]^40; A1 = QP[x + A]^3; A3 = QP[x^3 + A]^4; A9 = x*QP[x^9 + A]^3; s = ((A1 + 3*A9)*(A1 + 9*A9)*(A1^2 + 27*A9^2) - 48*x*A3^3 - 216*(A1*A9)^2)/A3; CoefficientList[s, x] (* Jean-François Alcover, Nov 14 2015, adapted from Michael Somos's PARI script *)
    eta[q_] := q^(1/24)*QPochhammer[q]; E4[q] := 1; E4[q_] := 1 + 240 *Sum[k^3* q^k/(1 - q^k), {k, 1, 500}]; CoefficientList[Series[E4[q^3] - 48*eta[q^3]^8 - 216*(eta[q]*eta[q^9])^6/eta[q^3]^4, {q, 0, 50}], q] (* G. C. Greubel, May 01 2018 *)
  • PARI
    {a(n) = local(A, A1, A3, A9); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^3; A3 = eta(x^3 + A)^4; A9 = x * eta(x^9 + A)^3; polcoeff( ((A1 + 3*A9) * (A1 + 9*A9) * (A1^2 + 27*A9^2) - 48*x*A3^3 - 216*(A1*A9)^2) / A3, n))}; /* Michael Somos, Aug 12 2014 */
    

Formula

Expansion of Q(q^3) - 48 * q * f(-q^3)^8 - 216 * q^2 * (f(-q) * f(-q)^9)^6 / f(-q^3)^4 in powers of q where Q(), f() are Ramanujan q-series. - Michael Somos, Aug 12 2014
Expansion of (a(q)^4 - 18 * a(q)^3*a(q^3) + 60 * a(q)^2*a(q^3)^2 - 54 * a(q)*a(q^3)^3 + 9 * a(q^3)^4) / -2 where a() is a cubic AGM theta function. - Michael Somos, Aug 12 2014
Expansion of b(q)^4 - 12 * b(q)^3*c(q^3) - 66 * b(q)^2*c(q^3)^2 - 36 * b(q)*c(q^3)^3 + 9 * c(q^3)^4 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Aug 12 2014
Expansion of E_4(q^3) - 48 * eta(q^3)^8 - 216 * eta(q)^6 * eta(q^9)^6 / eta(q^3)^4 in powers of q. [McKay and Sebbar, equation (8.2)] - Michael Somos, Aug 12 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^4 f(t) where q = exp(2 Pi i t).
a(3*n) = A004009(n) -216 * A242042(3*n). a(3*n + 1) = -48 * A000731(n) -216 * A242042(3*n + 1). a(3*n + 2) = -216 * A242042(3*n + 2). - Michael Somos, Aug 12 2014

Extensions

More terms from John McKay (mckay(AT)cs.concordia.ca), Apr 18 2004
More terms from Michael Somos, Aug 12 2014