A062251 Take minimal prime q such that n(q+1)-1 is prime (A060324), that is, the smallest prime q so that n = (p+1)/(q+1) with p prime; sequence gives values of p.
2, 5, 11, 11, 19, 17, 41, 23, 53, 29, 43, 47, 103, 41, 59, 47, 67, 53, 113, 59, 83, 131, 137, 71, 149, 103, 107, 83, 173, 89, 433, 127, 131, 101, 139, 107, 443, 113, 233, 239, 163, 167, 257, 131, 179, 137, 281, 191, 293, 149, 1019, 311, 211, 431, 439, 167, 227
Offset: 1
Examples
1 = (2+1)/(2+1), 2 = (5+1)/(2+1), 3 = (11+1)/(3+1), 4 = (11+1)/(2+1), ...
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7.
- Peter Luschny, Schinzel-Sierpinski conjecture and Calkin-Wilf tree.
- A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259.
Programs
-
Haskell
a062251 n = (a060324 n + 1) * n - 1 -- Reinhard Zumkeller, Aug 28 2014
-
Maple
a:= proc(n) local q; q:= 2; while not isprime(n*(q+1)-1) do q:= nextprime(q); od; n*(q+1)-1 end: seq(a(n), n=1..300);
-
Mathematica
a[n_] := (q = 2; While[ ! PrimeQ[n*(q+1)-1], q = NextPrime[q]]; n*(q+1)-1); Table[a[n], {n, 1, 57}] (* Jean-François Alcover, Feb 17 2012, after Maple *)
Formula
a(n) = (A060324(n) + 1) * n - 1. - Reinhard Zumkeller, Aug 28 2014
Extensions
More terms from Vladeta Jovovic, Jul 02 2001
Comments