cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062257 Number of (0,1)-strings of length n with no occurrences of the substrings 10101101 and 1110101.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 251, 496, 981, 1940, 3837, 7590, 15015, 29704, 58763, 116249, 229971, 454942, 899991, 1780410, 3522102, 6967611, 13783703, 27267665, 53942368, 106711708, 211102869, 417615105, 826148769, 1634332138
Offset: 0

Views

Author

Vladeta Jovovic, Jun 14 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Example 2.8.11).

Crossrefs

Formula

G.f.: (1+x^5+x^6+x^7-x^9)/(1+x^5-x^6-x^9-2*x-x^8+x^10). a(n) = 2*a(n-1)-a(n-5)+a(n-6)+a(n-8)+a(n-9)-a(n-10).

A062259 Number of (0,1)-strings of length n that avoid the substrings of substrings 11101011 and 101111.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 63, 124, 243, 476, 933, 1830, 3590, 7043, 13818, 27110, 53186, 104342, 204701, 401588, 787846, 1545619, 3032243, 5948749, 11670441, 22895434, 44916973, 88119508, 172875575, 339152648, 665360153, 1305324126, 2560825244
Offset: 0

Views

Author

Vladeta Jovovic, Jun 14 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problem 2.8.4).

Crossrefs

Formula

G.f.: (1+x+x^2+x^3+x^4+2*x^5+3*x^6+3*x^7+2*x^8+x^9)/(1-x-x^2-x^3-x^4-2*x^7-2*x^8-x^9-x^10). a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-4)+2*a(n-7)+2*a(n-8)+a(n-9)+a(n-10).
Goulden and Jackson give the g.f. in the equivalent form (1+x^5+x^6-x^8-x^9-x^10)/(1-2*x+x^5-2*x^7+x^9+x^11). - N. J. A. Sloane, Apr 09 2011
Showing 1-2 of 2 results.