cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062257 Number of (0,1)-strings of length n with no occurrences of the substrings 10101101 and 1110101.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 251, 496, 981, 1940, 3837, 7590, 15015, 29704, 58763, 116249, 229971, 454942, 899991, 1780410, 3522102, 6967611, 13783703, 27267665, 53942368, 106711708, 211102869, 417615105, 826148769, 1634332138
Offset: 0

Views

Author

Vladeta Jovovic, Jun 14 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Example 2.8.11).

Crossrefs

Formula

G.f.: (1+x^5+x^6+x^7-x^9)/(1+x^5-x^6-x^9-2*x-x^8+x^10). a(n) = 2*a(n-1)-a(n-5)+a(n-6)+a(n-8)+a(n-9)-a(n-10).

A062258 Number of (0,1)-strings of length n not containing the substring 0100100.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 252, 500, 993, 1972, 3916, 7776, 15441, 30662, 60887, 120906, 240088, 476753, 946709, 1879921, 3733040, 7412858, 14720031, 29230199, 58043664, 115259801, 228876346, 454489608, 902499570, 1792132228
Offset: 0

Views

Author

Vladeta Jovovic, Jun 14 2001

Keywords

Comments

Also, number of (0,1)-strings of length n not containing the substring 1001001. - N. J. A. Sloane, Apr 02 2012

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Problem 2.8.2).
  • Reilly, J. W.; Stanton, R. G. Variable strings with a fixed substring. Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971), pp. 483--494. Louisiana State Univ., Baton Rouge, La.,1971. MR0319775 (47 #8317) [From N. J. A. Sloane, Apr 02 2012]

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x^3+x^6)/(1-2x+x^3-2x^4+x^6-x^7),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2,0,-1,1},{1,2,4,8,16,32,64},40] (* Harvey P. Dale, Aug 10 2021 *)

Formula

G.f.: (1 + x^3 + x^6)/(1 - 2*x + x^3 - 2*x^4 + x^6 - x^7).
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) - a(n-6) + a(n-7).

A140134 a(n)=2a(n-1) but when sum of digits of 2a(n-1) is greater than 9 take a(n) = largest number < 2a(n-1) which has sum of digits = 9.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 63, 126, 252, 504, 1008, 2016, 4032, 8001, 16002, 32004, 63000, 126000, 252000, 504000, 1008000, 2016000, 4032000, 8001000, 16002000, 32004000, 63000000, 126000000, 252000000, 504000000, 1008000000, 2016000000
Offset: 0

Views

Author

Paul Curtz, Jun 15 2008

Keywords

Examples

			a(12)=4032; 2*4032 = 8064; digit sum is 18; decrease until we get a number with digit sum 9, which is 8001; so a(13) = 8001. - From _N. J. A. Sloane_, Oct 08 2012
		

Crossrefs

Cf. A062259.

Extensions

Keyword base added by Reinhard Zumkeller, Feb 25 2010
Showing 1-3 of 3 results.