cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A062140 Coefficient triangle of generalized Laguerre polynomials n!*L(n,4,x) (rising powers of x).

Original entry on oeis.org

1, 5, -1, 30, -12, 1, 210, -126, 21, -1, 1680, -1344, 336, -32, 1, 15120, -15120, 5040, -720, 45, -1, 151200, -181440, 75600, -14400, 1350, -60, 1, 1663200, -2328480, 1164240, -277200, 34650, -2310, 77, -1, 19958400, -31933440
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The row polynomials s(n,x) := n!*L(n,4,x)= sum(a(n,m)*x^m,m=0..n) have g.f. exp(-z*x/(1-z))/(1-z)^5. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials p(n,x)=sum(|A008297(n,m)|*(-x)^m, m=1..n) and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).

Examples

			Triangle begins:
  {1};
  {5,-1};
  {30,-12,1};
  {210,-126,21,-1};
  ...
2!*L(2,4,x)=30-12*x+x^2.
		

Crossrefs

For m=0..5 the (unsigned) columns give A001720(n+4), A062199, A062260-A062263. The row sums (signed) give A062265, the row sums (unsigned) give A062266.

Programs

  • Mathematica
    Flatten[Table[((-1)^m)*n!*Binomial[n+4,n-m]/m!,{n,0,11},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 4)); \\ Michel Marcus, Feb 06 2021
  • Python
    import math
    f=math.factorial
    def C(n,r):
        return f(n)//f(r)//f(n-r)
    i=0
    for n in range(26):
        for m in range(n+1):
            print(i, (-1)**m*f(n)*C(n+4,n-m)//f(m))
            i+=1 # Indranil Ghosh, Feb 23 2017
    

Formula

T(n, m) = ((-1)^m)*n!*binomial(n+4, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^5), m >= 0.
Showing 1-1 of 1 results.