cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062270 Numerators in partial products of the twin prime constant.

Original entry on oeis.org

3, 45, 175, 693, 11011, 2807805, 302307005, 402243205, 714186915, 42803602439, 11086133031701, 5908908905896633, 1488200914442251997, 3041106216468949733, 16213234917387714257, 21611220383343195817
Offset: 2

Views

Author

Frank Ellermann, Jun 16 2001

Keywords

Comments

For n>1, a(n) is the absolute value of the numerator of the determinant of the n X n matrix with elements M[i,j] = 1/(prime(i)-1)^2 for i=j and 1 otherwise. - Alexander Adamchuk, Jun 02 2006

Examples

			a(4) = 175 = 3*1*5*3*7*5 / gcd(3*1*5*3*7*5, 2*2*4*4*6*6).
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20

Crossrefs

Cf. A062271 (denominators), A005597 (decimal expansion).

Programs

  • Mathematica
    Numerator[Abs[Table[ Det[ DiagonalMatrix[ Table[ 1/(Prime[i]-1)^2 - 1, {i, 1, n} ] ] + 1 ], {n, 2, 20} ]]] (* Alexander Adamchuk, Jun 02 2006 *)
  • PARI
    a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ Michel Marcus, May 31 2022

Formula

a(n) = a(n-1)*(prime(n)*(prime(n)-2)) / gcd(a(n-1)*prime(n)*(prime(n)-2), A062271(n)) for n > 2.

Extensions

Typo in link corrected by Martin Griffiths, Apr 03 2009