A062323 Triangle with a(n,n)=1, a(n,k)=(n-1)*a(n-1,k)+a(n-2,k) for n>k.
1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 7, 10, 7, 3, 1, 30, 43, 30, 13, 4, 1, 157, 225, 157, 68, 21, 5, 1, 972, 1393, 972, 421, 130, 31, 6, 1, 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1, 56660, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 516901, 740785, 516901, 223884
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 1, 1, 1; [3] 2, 3, 2, 1; [4] 7, 10, 7, 3, 1; [5] 30, 43, 30, 13, 4, 1; [6] 157, 225, 157, 68, 21, 5, 1; [7] 972, 1393, 972, 421, 130, 31, 6, 1; [8] 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1;
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Crossrefs
Programs
-
Haskell
a062323 n k = a062323_tabl !! n !! k a062323_row n = a062323_tabl !! n a062323_tabl = map fst $ iterate f ([1], [0,1]) where f (us, vs) = (vs, ws) where ws = (zipWith (+) (us ++ [0]) (map (* v) vs)) ++ [1] where v = last (init vs) + 1 -- Reinhard Zumkeller, Mar 05 2013
Formula
a(n, k)=k*a(n, k+1)+a(n, k+2) for n>k.