A102472 Triangle read by rows. Let S(k) be the sequence defined by F(0)=0, F(1)=1, F(n-1) + (n+k)*F(n) = F(n+1). E.g. S(0) = 0, 1, 1, 3, 10, 43, 225, 1393, 9976, 81201, ... Then S(0), S(1), S(2), ... are written vertically, next to each other, with the initial term of each on the next row down.
1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 43, 30, 13, 4, 1, 225, 157, 68, 21, 5, 1, 1393, 972, 421, 130, 31, 6, 1, 9976, 6961, 3015, 931, 222, 43, 7, 1, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 740785, 516901, 223884, 69133, 16485, 3193, 520, 73, 9, 1
Offset: 1
Examples
Triangle begins: [1] 1; [2] 1, 1; [3] 3, 2, 1; [4] 10, 7, 3, 1; [5] 43, 30, 13, 4, 1; [6] 225, 157, 68, 21, 5, 1; [7] 1393, 972, 421, 130, 31, 6, 1; [8] 9976, 6961, 3015, 931, 222, 43, 7, 1;
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..7875
Crossrefs
Programs
-
Haskell
a102472 n k = a102472_tabl !! (n-1) !! (k-1) a102472_row n = a102472_tabl !! (n-1) a102472_tabl = map reverse a102473_tabl -- Reinhard Zumkeller, Sep 14 2014
Extensions
Entry revised by N. J. A. Sloane, Jul 09 2005
Comments