cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062340 Primes whose sum of digits is a multiple of 5.

Original entry on oeis.org

5, 19, 23, 37, 41, 73, 109, 113, 127, 131, 163, 181, 271, 307, 311, 389, 401, 433, 479, 523, 541, 569, 587, 613, 631, 659, 677, 811, 839, 857, 929, 947, 983, 997, 1009, 1013, 1031, 1063, 1103, 1117, 1153, 1171, 1289, 1301, 1423, 1487, 1531, 1559, 1621, 1667
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Examples

			569 is a prime with sum of digits = 20, hence belongs to the sequence.
		

Crossrefs

Cf. A007953 (sum of digits), A227793 (sum of digits divisible by 5).
Has as subsequence A062341 (primes with sum of digits s = 5), A107579 (s = 10), A106760 (s = 20), A106763 (s = 25), A106770 (s = 35), A106773 (s = 40), A106780 (s = 50), A106783 (s = 55), A107619 (s = 65) and A181321 (s = 70).
Cf. A062340 (equivalent for 8).

Programs

  • Magma
    [ p: p in PrimesUpTo(10000) | &+Intseq(p) mod 5 eq 0 ]; // Vincenzo Librandi, Apr 02 2011
    
  • Mathematica
    Select[Prime[Range[300]],Divisible[Total[IntegerDigits[#]],5]&] (* Harvey P. Dale, Jul 06 2020 *)
  • PARI
    select( {is_A062340(n)=sumdigits(n)%5==0&&isprime(n)}, primes([1,2000])) \\ M. F. Hasler, Mar 10 2022
  • Python
    from sympy import primerange as primes
    def ok(p): return sum(map(int, str(p)))%5 == 0
    print(list(filter(ok, primes(1, 1668)))) # Michael S. Branicky, May 19 2021
    

Formula

Intersection of A000040 (primes) and A227793 (sum of digits in 5Z). - M. F. Hasler, Mar 10 2022

Extensions

Corrected and extended by Harvey P. Dale and Larry Reeves (larryr(AT)acm.org), Jul 04 2001