cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062354 a(n) = sigma(n)*phi(n).

Original entry on oeis.org

1, 3, 8, 14, 24, 24, 48, 60, 78, 72, 120, 112, 168, 144, 192, 248, 288, 234, 360, 336, 384, 360, 528, 480, 620, 504, 720, 672, 840, 576, 960, 1008, 960, 864, 1152, 1092, 1368, 1080, 1344, 1440, 1680, 1152, 1848, 1680, 1872, 1584, 2208, 1984, 2394, 1860
Offset: 1

Views

Author

Jason Earls, Jul 06 2001

Keywords

Comments

Let G_n be the group of invertible 2 X 2 matrices mod n (sequence A000252). a(n) is the number of conjugacy classes in G_n. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 13 2001
a(n) = Sum_{d|n} phi(n*d). - Vladeta Jovovic, Apr 17 2002
Apparently the Mobius transform of A062952. - R. J. Mathar, Oct 01 2011

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, Prob. 7.2 12, p. 141.

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n] DivisorSigma[1, n], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    a(n)=sigma(n)*eulerphi(n); vector(150,n,a(n))

Formula

Multiplicative with a(p^e) = p^(e-1)*(p^(e+1)-1). - Vladeta Jovovic, Apr 17 2002
Dirichlet g.f.: zeta(s-1)*zeta(s-2)*product_{primes p} (1-p^(1-s)-p^(-s)+p^(2-2s)). - R. J. Mathar, Oct 01 2011, corrected by Vaclav Kotesovec, Dec 17 2019
6/Pi^2 < a(n)/n^2 < 1 for n > 1. - Jonathan Sondow, Mar 06 2014
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^3 / 18, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.535896... - Vaclav Kotesovec, Dec 17 2019
Sum_{n>=1} 1/a(n) = 1.7865764... (A093827). - Amiram Eldar, Aug 20 2020
a(n)/n^2 > 8/Pi^2 for odd n. - M. F. Hasler, Jul 08 2025